
So You Want to Build an Automated Scheduling System

David Montana
BBN Technologies

10 Moulton Street, Cambridge, MA 02138
dmontana@bbn.com

Abstract

The BBN scheduling group contracts with
both government and industry to per-
form research and development for genetic-
algorithm-based scheduling. We have devel-
oped custom real-world automated schedul-
ing systems for different clients. Here, I relate
some of the insight gained from our experi-
ence organized into a few broad categories.

1 SELLING THE PROJECT

Clearly, one of the critical parts of building an auto-
mated scheduling systems is securing the commitment
of sufficient money and resources to accomplish the
job. Selling such a project within an organization re-
quires a champion (or champions) inside the organiza-
tion, someone who will put their influence and credi-
bility behind the effort. As an outside contractor, one
of our toughest jobs is trying to find such a champion.
If you are an insider in the organization, you are at a
big advantage because you can be that champion or
know who else to approach.

There is likely to be a lot of resistance to the pro-
posed project because there is a lot at stake. Schedul-
ing is often at the heart of the business process, and
changing how the scheduling is done likely means an
overhaul of this process. The results can affect not
only the organization’s bottom line but also its people,
both those people responsible for creating the sched-
ules and (in many cases) those whose work is being
scheduled. For example, when we were creating an
automated scheduler for assigning computer techni-
cians to calls for service [Montana et al., 1998], the
technicians were very upset at their loss of autonomy
in creating their own schedules. (Their choices were
often bad and were causing an inefficiency in the op-

erations.) As another example, the Air Force was mo-
tivated to have us build an automated crew scheduler
for them because their current approach was leading to
unpredictability of schedules, upsetting their people’s
family lives and causing high turnover [Rana-Stevens
et al., 2000]. An additional effect of implementing an
automated scheduler is that it can sometimes require
an overhaul of the Information Technology (IT) sys-
tems to get the right data to and from the scheduler
in a timely manner. This will likely make the IT sys-
tems managers unhappy.

It is important that the champion(s) have the ammu-
nition required to sell the project. To start, the cham-
pion requires a cost-benefit analysis that will justify
the project. This should be a realistic analysis be-
cause the project will likely be judged against it. An-
other very useful sales tool is a prototype system that
shows the possibility of building the real system and in
broad terms how the real system would work. In mul-
tiple cases, we have used such a prototype as a means
to convince skeptics of the feasibility of automating a
process that they previously felt could not be done by
a computer. Additionally, one should remember that
the selling of the project is a continuous process. Along
the way, there should be demonstrations of progress
and early releases to get people not doing system de-
velopment involved in the process.

2 A CONCEPT OF OPERATIONS

The concept of operations is how it is envisioned that
the system will be used. It is important to develop
a concept of operations early in the process because
it determines key requirements of the system. Such
requirements include: (i) interfaces to data sources and
sinks, (ii) schedule turnaround times (which in turn
can affect which algorithm to use as discussed below),
(iii) user interface functionality, and (iv) automated
scheduler logic and functionality.



There is a wide range of possibilities for the concept of
operations. For example, consider the issue of when to
run the automated scheduler and how long it should
take to create schedules. This can be as simple as the
scheduler making each day’s schedule the night be-
fore and printing out the day’s schedule each morning.
However, it can also involve dynamic rescheduling, i.e.
having the scheduler revise the schedules as they are
being executed. For example, a system we built for
scheduling computer service technicians needed to cre-
ate a new schedule every ten minutes. Many of the
service calls required attention within a few hours af-
ter being received, so to be able to fit these calls in a
reasonable manner into the schedules required a fast
reaction. A system we built for aircrew scheduling for
the U.S. Air Force had the automated scheduler exe-
cute only when there were changes that necessitated a
new schedule. These changes were either new or mod-
ified missions arriving from headquarters or a human
scheduler making manual modifications.

Another source of variation in the concept of opera-
tions is how to involve the human user. It may be as
simple as the automated system having the final say
with no human scheduling inputs. For our computer
service scheduler, the human user needed to be able
to override the scheduler in certain situations, because
at times the human scheduling agent worked out with
the customer certain agreements to which the com-
puter was not privy. For our aircrew scheduler, a hu-
man user was required to take responsibility for each
assignment. Therefore, we introduced the concept of
approval whereby once a human signed off on a par-
ticular assignment, there was a cost in the evaluation
function for changing that assignment. This cost in-
creased as the time to execute the assigned mission
drew closer.

3 SCHEDULING ALGORITHM
SELECTION

In the logic of scheduling, there are two different types
of constraints, hard and soft. Hard constraints cannot
be violated, while soft constraints can be violated but
at a cost. In a well-defined scheduling problem, it is
generally easy to find a legal schedule (i.e., one that
satisfies the hard constraints) but impossible to find
one also satisfying all the soft constraints. The goal
is to find a legal schedule that does as well as possi-
ble at satisfying the soft constraints. In a well-formed
problem, the soft contraints are combined into a single
evaluation function that produces a score measuring
the quality of any legal schedule. Schedule optimiza-
tion is the process of searching for the optimal schedule

among the very large set of legal schedules.

There are a variety of different types of algorithms for
performing this search. The major differentiators be-
tween different scheduling algorithms are (i) the qual-
ity of the schedules they find, (ii) the amount of com-
putation time required to find these schedules, and
(iii) the ease with which they can be adopted to a par-
ticular scheduling problem. There is no single type
of scheduling algorithm that is best for all problems.
Which algorithm is best depends on a variety of fac-
tors, including the nature of the problem, the required
quality of the solution, and the time allowed to find
a solution. For example, the airline flight schedul-
ing problem, where a new schedule is required about
once a month and where every percentage point dif-
ference in the schedule translates into millions of dol-
lars, might best be solved by an operations research
technique (such as mathematical programming) that
takes a long time but finds the best schedule. However,
our computer service scheduling problem (see above)
that requires a new schedule every ten minutes needs
a faster algorithm (at the expense of some schedule
optimality), such as a genetic/evolutionary algorithm
or a simple heuristic.

We have found genetic algorithms to be a highly effec-
tive all-purpose optimization method for a few reasons.
First, they are easy to apply to almost any optimiza-
tion problem, including those with odd constraints
that may derail other algorithms. Second, compared
to other general-purpose optimization techniques, in-
cluding standard operations research techniques, ge-
netic algorithms are fast at finding good (albeit often
suboptimal) solutions, particularly as the problem size
increases. Third, genetic algorithms allow an explicit
tradeoff between the search time and the quality of
the solution. Fourth, genetic algorithms, with their
population-based approach, allow for easy and effec-
tive large-scale parallelization.

Once you have chosen to use a genetic or evolutionary
algorithm, there are a number of algorithmic design
decisions to be made (and usually some software to be
written). The most critical decisions are how to rep-
resent a schedule as a chromosome and how to define
the genetic operators (often crossover and mutation)
that generate new chromosomes from existing ones. A
direct representation has a chromosome be the sched-
ule, or at least an abstract version of the schedule. In
this case, the difficult part is defining operators that
maintain the hard constraints. An indirect representa-
tion has a chromosome provide information on how to
build a schedule that is passed to a schedule builder.
Here, the knowledge of how to satisfy the constraints



is contained in the schedule builder. A chromosome in
an indirect representation can be as simple as the or-
der in which the schedule builder should consider the
tasks, but can also contain more complex instructions.

Besides the representation and operators, there are
some secondary, yet still important, considerations in
designing a genetic schedule optimizer. One such con-
sideration is how to initialize the population. Partic-
ularly when using a direct representation, it can be
highly beneficial to use better-than-random individu-
als during initialization. Another consideration is how
to select parameters of the genetic algorithm, including
those for population size, selection pressure, and ter-
mination condition. These directly influence the trade-
off between schedule quality and execution time and
should be selected based on the problem requirements
and the available hardware.

4 KNOWLEDGE ENGINEERING

One of the big challenges of building automated sched-
uling systems is that most scheduling problems are
unique, with a logic and a set of business rules that
are different from other problems. For many prob-
lems, the logic and business rules are complex and not
well documented, so it becomes a major challenge of
the project to capture them in a systematic way.

Currently, for many scheduling processes, humans do
the scheduling manually, and the logic for how to do it
only fully exists in their brains. The scheduling system
developer needs to extract this knowledge. Using the
right approach can help to do this, as well as providing
a chance to gain the good graces of the experts, who
are often also the intended end users of the system.
The experts can be resistant at first due to the feel-
ing that an algorithm cannot capture their expertise.
However, if you get them involved in the development
process, they will often eventually develop a pride of
ownership.

You need to ask the right questions to get the right in-
formation. One good approach is to have the experts
step through the entire (current) scheduling process.
Another good question is to ask what makes a good
schedule, and to supply a variety of different hypothet-
ical situations to try to capture the concept of schedule
quality as thoroughly as possible. A third question is
what type of hard constraints must a schedule satisfy.

Capturing the scheduling logic and business rules is an
iterative redesign process. Do not expect to achieve
success on the first pass. Instead, just implement the
business rules as you have captured them, and execute
the scheduling algorithm on sample data. When the

algorithm fails in a (human-)noticeable way, it usually
is not because the algorithm is reaching a suboptimal
solution (at least not if you are using a genetic algo-
rithm) but rather because of bad business rules. Work
with the experts to identify the problem, fix it, and
then repeat the process.

5 INTEGRATION WITH IT
SYSTEMS

Since scheduling is often at the center of operations
for an organization, an automated scheduling system
often must interact with some of the organization’s
critical IT systems. Even when the scheduling system
is at the periphery of operations, it must get its data
from somewhere and therefore, unless the user enters
the data, must interface with other system(s).

There are a variety of types of data for input and out-
put. The scheduling system needs to read the data
about the tasks and resources, usually from some ex-
isting databases (such as a personnel database or an
orders database). Often, the scheduling system also
needs to report the schedule as it was executed for
the purposes of billing, payroll, etc., and hence needs
to communicate with some other system(s). A third
type of interface is for monitoring the schedules during
execution. This involves the scheduling system receiv-
ing feedback so that it can update the schedule based
on reported deviations, such as a service call taking
longer than expected or a mission getting delayed.

It is important to define data requirements early in the
development process. Then, all involved, including the
IT people, know what types of data feeds are needed,
as well as estimates on the data rates. If this is going
to overtax the existing systems in any way, then there
is time to remedy this problem. It is also important to
define the formats and protocols for the interfaces early
in the process. To the extent possible, the scheduling
system should use existing interfaces. However, for
those cases where it is not possible, it is important to
identify the shortcomings and define new interfaces or
extensions to old interfaces soon enough that there is
enough time for their development.

Our experience has been that introducing real-time
scheduling at the center of an organization’s opera-
tions can identify deficiencies in the organization’s IT
systems. Correcting those deficiencies can improve op-
erations as much as the automated scheduler itself. For
example, for our computer service scheduling system,
the company had previously handed service engineers
their schedules at the beginning of the day and had
only contacted them during the day in case of an emer-



gency. To perform automated scheduling, they had to
create the capability to track the service engineers dur-
ing their day’s work, and this capability provided them
large benefits beyond better schedules.

6 ALGORITHMIC TEST CASES

Test cases are a standard technique for software qual-
ity assurance. They provide scenarios to verify that
the software is functioning as envisioned. For an auto-
mated scheduling system, it is important to have a set
of test cases specifically designed to test the correct-
ness of the scheduling algorithm in addition to those
for testing the software. As new logic and business
rules are added to improve the scheduling algorithm
in certain areas, the test cases allow regression testing
to verify that these changes have not caused problems
in other areas. The test cases can also be very useful in
convincing skeptics that the software can make good
decisions.

The test cases should cover, in some sense, the full
range of possibilities that can be encountered by the
scheduling algorithm. For each class of business rules,
there should be one or more test cases that specifi-
cally address this rule. These targeted test cases need
to be manufactured so that all else is factored out and
so that there is a clearly defined correct answer. A
second set of test cases should address tradeoffs made
in the optimization criterion. It is often tricky to tune
the tradeoffs between the different objectives in a mul-
tiobjective optimization function, and these test cases
allow a systematic approach to this tuning. A third
set of test cases deal with scalability and the ability to
handle real, rather than manufactured, data. These
test cases should contain at least one or two datasets
that are as large a problem as the system will be ex-
pected to handle. These test cases will have no single
“correct” answer, but the ability of the scheduling al-
gorithm to produce reasonable answers within a time
limit provides a type of check that smaller, manufac-
tured datasets cannot.

7 SYSTEM DESIGN AND
IMPLEMENTATION

One big decision to make when designing a scheduling
system is what the software architecture should be.
For a scheduling system that has multiple users and
external data sources and sinks, a client-server archi-
tecture is what makes most sense. A central sever has a
database that contains the current data and schedule.
The user interfaces, external data interfaces, and the
automated scheduler are all clients reading from and

writing to the central database. Using a web server as
the central server and web browsers as the user inter-
faces can make maintenance and update of the system
much easier at the expense of reduced interactivity in
the user interface.

Another big decision is whether to use third-party soft-
ware or build the system from scratch. There are many
scheduling software packages available for sale, or even
for free download via the Internet. Most of these
scheduling packages solve a particular type of schedul-
ing problem, e.g. crew scheduling or tournament sched-
uling. If such a package satisfies the needs of your
problem and is available within your price range, then
use it instead of developing your own.

In addition to problem-specific scheduling solutions,
there exist reconfigurable scheduling systems that can
be tailored by the user to a wide range of different
types of problems. For scheduling problems that can
be formulated as mathematical programming prob-
lems, there are a variety of general-purpose solvers,
many based on AMPL [Fourer et al., 1993], includ-
ing ILOG’s CPLEX product. For those scheduling
problems that cannot be expressed as mathemati-
cal programming problems, there are two reconfig-
urable scheduling packages with much greater flexibil-
ity in expressing constraints. ILOG sells a constraint-
based scheduling product based on OPL [Van Henten-
ryck, 1999]. We provide our Vishnu genetic-algorithm-
based scheduling software for free download [Montana,
2001b]. While the ILOG product is more mature,
Vishnu is free and is provided open source (hence al-
lowing the user to customize the software).

An alternative to buying or downloading a full sched-
uling system is to just download a genetic algorithm
(or other optimization algorithm) package. This will
save some time developing the scheduling algorithm
(although you will still have plenty of customization to
do). However, if you are developing a full distributed
system, the time savings will be a very small frac-
tion of the overall development time because you will
still need to develop the distributed infrastructure, the
database, the user interface, the data interfaces, etc.
These other pieces of the system are what take the
majority of the development time.

One other thing to remember when designing and im-
plementing an automated scheduling system is that it
is still a software system and all the standard rules for
developing such systems still apply.



8 FUTURE TRENDS

The use of evolutionary algorithms for real-world
scheduling applications has been very successful, to the
point where it is now almost commonplace. The goal
for the future is to extend the range of applicability
of evolutionary scheduling, particularly to problems
that were previously not amenable to automated, op-
timized scheduling. There are two directions in which
to proceed.

One direction is to make it cheaper and easier to de-
velop automated scheduling systems so that the tech-
nology can be applied to more problems [Montana,
2001a]. The high costs of developing a scheduling sys-
tem largely from scratch (plus the training and main-
tenance for such a system) mean that such develop-
ment can only be justified when there is a lot of money
depending on the schedules. Replacing custom devel-
opment with reusable software would greatly reduce
these costs and open up the range of possible appli-
cations. There is currently the beginnings of a push
towards reconfigurable schedulers, i.e. automated op-
timizing schedulers that can be used for a wide range
of scheduling problems without the need for modify-
ing the software. It would also be beneficial to have
open standards to allow easy swapping of scheduling
components, but that is not on the near-term horizon.

A second direction is towards multiple schedulers inter-
acting. This enables two important capabilities. One
is the ability to solve larger-scale problems by decom-
posing them into smaller problems. The second, and
more important, is the ability of multiple organizations
to automatically coordinate their schedules [Montana
et al., 2000]. This is critical to fully automated flexible
supply chains and other forms of automated business-
to-business (B2B) transactions that rely on fitting the
transaction into multiple schedules.

References

[Fourer et al., 1993] R. Fourer, D. Gay, and
B. Kernighan. AMPL: A Modeling Language for
Mathematical Programming. Duxbury Press, Bel-
mont, CA, 1993.

[Montana et al., 1998] D. Montana, M. Brinn,
S. Moore, and G. Bidwell. Genetic algorithms for
complex, real-time scheduling. In Proceedings of the
IEEE International Conference on Systems, Man,
and Cybernetics, pages 2213–2218, 1998.

[Montana et al., 2000] D. Montana, J. Herrero, G. Vi-
daver, and G. Bidwell. A multiagent society for mil-

itary transporation scheduling. Journal of Schedul-
ing, 3(4):225–246, 2000.

[Montana, 2001a] D. Montana. Optimized scheduling
for the masses. In Genetic and Evolutionary Com-
putation Conference Workshop Program, pages 132–
136, 2001.

[Montana, 2001b] D. Montana. A reconfigurable opti-
mizing scheduler. In Proceedings of the Genetic and
Evolutionary Computation Conference, pages 1159–
1166, 2001.

[Rana-Stevens et al., 2000] S. Rana-Stevens, B. Lu-
bin, and D. Montana. The air crew scheduling sys-
tem: The design of a real-world, dynamic genetic
scheduler. In Genetic and Evolutionary Computa-
tion Conference Late Breaking Papers, 2000.

[Van Hentenryck, 1999] P. Van Hentenryck. The OPL
Optimization Programming Language. MIT Press,
Cambridge, MA, 1999.


