
Optimizing Routing and Backlogs for Job Flows in a
Distributed Computing Environment

David Montana and John Zinky

BBN Technologies
10 Moulton Street, Cambridge, MA 02138
dmontana@bbn.com, jzinky@bbn.com

Summary. We address the problem of optimizing the flow of compute jobs through a dis-
tributed system of compute servers. The goal is to determine the best policy for how to route
jobs to different compute custers as well as to decide which jobs to backlog until a future
time. We use an approach that is a hybrid of dynamic programming and a genetic algorithm.
Dynamic programming determines the routing and backlog decisions about individual flows
of homogeneous jobs, while a genetic algorithm optimizes the order in which the different
flows are fed to the dynamic programming algorithm. We demonstrate the effectiveness of
this approach on sample problems, some designed to yield a known correct answer and others
designed to test the scaling.

1 Introduction

Distributed computing is the ability to share computational load among multiple
computers across a network, and it is a powerful way to increase compute capac-
ity. Effective usage of this joint compute power depends on making good decisions
about how to assign the compute tasks to the compute resources. The question of
how best to distribute the tasks to the resources can often be formulated as an opti-
mization problem. However, this optimization problem can vary widely depending
on the assumptions about the nature of the compute tasks, resources, connectivity,
and criteria for what is a good set of assignments.

1.1 Overview of the Problem

We have defined an optimization problem based on the needs of a customer who
controls a large distributed network of computing devices, also referred to as an
enterprise grid. It is formulated in general enough terms that it is applicable to other
enterprise grids, and not just that of the customer. Some distinguishing properties of
this problem are:

• The jobs are aggregated intojob flows, where the jobs in a flow are homogeneous
in their properties and follow certain arrival statistics. The optimization considers



2 Montana and Zinky

only flows and not individual jobs. The assumption is that there are enough jobs
in a flow that they can be modeled accurately and more efficiently as an aggregate
flow.

• The resources are aggregated intoclusters, each with its own local scheduler
that assigns individual jobs to individual resources. We assume that the local
scheduling at a cluster is handled separately and focus on the high-level prob-
lem of routing the jobs flows between clusters. The resource configuration is an
enterprise grid, and the problem is to design a metascheduler.

• Each job consists of a sequences of steps, also referred to astasks. In general, the
tasks for a job require different compute resources, and hence fully scheduling
a job requires finding a sequence of different clusters for the job to visit, i.e. a
route through the clusters. When considering a job flow rather than an individual
job, this route is potentially multipath, as different jobs in the flow can follow
different routes. Note that these routes are not routes in the networking sense, i.e.
a set of intermediate points leading to a destination, but closer to routes in the
vehicle routing sense, i.e. a sequence of destinations.

• The jobs can have varyingutilities anddeadlines, although the utilities and av-
erage deadlines need to be homogeneous among jobs within each job flow. This
reflects the reality that some jobs, such as providing an interactive response to
a human, require fast turnaround to be useful, while others, such as overnight
batch jobs, do not. Similarly, some jobs are more important to complete than oth-
ers based on the mission of the enterprise. Balancing the tradeoff between jobs
with tighter deadlines and those with higher utility is an important functionality
of the metascheduler.

• Jobs can be stored inbacklog until a future time as a means of ceding resources
to other jobs. This is generally used to prevent jobs with longer deadlines from
blocking the execution of jobs with shorter deadlines when the latter jobs have
lesser or equal utility than the former. One assumption is that the local schedulers
simply schedule the higher-utility jobs first without considering the deadlines,
leaving consideration of deadlines to the metascheduler (which makes sense be-
cause the metascheduler has the global view needed to make tradeoffs between
utility and deadlines). A second assumption is that the metascheduler is provided
predictions about what the future job flow loads and resource availabilities will
be to provide a basis for these tradeoffs.

The details of the problem definition are given in Section 2.

1.2 Previous Work

There is a long history of work in distributed computing, and we do not attempt to
summarize it all. Past research has addressed various aspects of distributed comput-
ing, including both how to write algorithms that execute on distributed infrastructure
and how to create the infrastructure. Just on the infrastructure side, which is our fo-
cus, many issues have been studied, such as how hosts connect and communicate,
how hosts coordinate to share tasks, and security. An example of an application that



Optimizing Routing and Backlogs 3

addresses a wide range of these issues is Condor [18]. We limit our attention to job
scheduling, i.e. how best to share tasks among the assorted compute resources.

Many of the techniques for assigning compute tasks to resources are referred to as
load balancing, since a key objective is to minimize the amount of time that resources
are idle.Adaptive load balancingis when the assignment algorithm reacts online to
the current situation. Many of the schemes for load balancing are application-specific
and need to be revised for each usage, but others are more general [13].Scheduling
is potentially more general than load balancing, since scheduling can have more
complex objectives than just the immediate correction of imbalances in processing
loads.

One important issue to address is scaling. If there are a very large number of
compute resources and tasks, it is challenging to efficiently use all the resources. A
common approach to scaling is a hierarchical decomposition of the load balancing or
scheduling responsibilities. The resources are divided intoclusters. Each cluster has
its own local schedulerthat assigns tasks to resources, while a high-level scheduler
dispatches tasks to clusters (essentially treating clusters as resources). Such a high-
level scheduler is now often referred to as agrid metascheduler, with the distributed
collection of compute resources under its control called agrid [11, 19]. There are
different development environments for the creation of grid metaschedulers includ-
ing Community Scheduler Framework, Gridway, and Condor-G [18]. Grimme [8]
distinguishes three types of grids: a global grid is a loose confederation across a
wide geography with different owners; a high-perfomance-computing grid is a tight
clustering of resources; and an enterprise grid (which is the focus of our paper) is
a loose cluster like the global grid but with all machines under the ownership of a
single organization [16]. There are different scheduling requirements for each type
of grid.

We now mention some previous research that addresses aspects of the scheduling
problem not commonly investigated but highly relevant to our work. Lo et al. [10],
in their work on metascheduling, address the issue of the effect of time zones on
scheduling, allowing the scheduler to anticipate lower loads on compute resources
when it is night in their local time zones. In general, the ability to predict loads in
the future can help inform scheduling decisions made in the present, particularly if
some tasks can wait until the future to be executed [6, 3]. Bose et al. [3] show that
it is possible to use a genetic algorithm as a metascheduler and that it can execute
fast enough to be used online under certain circumstances. This genetic algorithm
uses a direct encoding with a chromosome that maps each task to its assigned re-
source. Andresen and McCune [1] define the concept of atask chain, a sequence of
compute tasks that must be performed to complete a compute jobs, and scheduling a
job means routing the job in sequence between resources. Stone [15] uses a network
flow algorithm for determining routes of jobs through the resource; this differs from
most techniques for scheduling of distributed computing, which consider each task
in isolation rather than as part of a flow.

A flow-based view of scheduling leads to a fundamentally different scheduling
problem, one that is less reactive and more predictive and one that focuses more
on statistical trends rather than individuals jobs and tasks. While uncommon for



4 Montana and Zinky

scheduling of distributed processing, a flow-based approach is common for network
routing, and some techniques for determining routes in networks are actually more
similar to our approach than those from distributed computing. For example, Casetti
et al. [4] has used hierarchical load balancing in the network routing context with
the statically determined routing strategy based on theoffered loads, which are the
average flows of different types of traffic. Oueslati and Roberts [14] have demon-
strated the benefits in networks of flow-aware routing, i.e. considering each packet
as part of a larger flow, as opposed to flow-oblivious routing, i.e. treating each packet
separately. Barolli et al. [2] use a genetic algorithm whose chromosomes directly
encode a routing tree to determine optimal routes through a network. Okuhara et
al. [12] also use a genetic algorithm whose chromosomes directly encode a route,
or multiple routes, for optimizing flow-based routing. They include the concept of
optimizing flow control, which is the prevention of certain flows from entering the
network in order to prevent congestion and which is very similar to our use of back-
log. Key and Massoullie [9] integrate the concept of utility associated with a flow
into their optimization criterion used with their fluid model for network routing.

1.3 Overview of Our Approach

A distinguishing property of our solution to this problem is that it is a hybrid ap-
proach, i.e. a combination of different techniques for handling different parts of the
problem. These different techniques are the following.

• A simplegreedy algorithm selects the assigned resource cluster for a given task
in a given job at a given time. For each cluster that can handle the task, the al-
gorithm temporarily assigns the task to that cluster, propagates the consequences
of this assignments, and determines which assignment minimizes the overall in-
crease in the score.

• The question of when and for how long to place a given job in backlog is ad-
dressed usingdynamic programming. For each task/step in a job, it explores
different lengths of time for which to backlog the job at this step, creating a new
branch in a search tree for each choice and pruning the tree to explore only the
best possibilities. This cannot properly be done as a greedy search because the
selection of the backlog times at earlier steps constrains the options at later steps,
and the effects cannot be determined until handling the later steps.

• The order in which to consider the flows for routing and backlog decisions is
determined by agenetic algorithm. The dynamic programming and greedy al-
gorithms determine the routing and backlog decisions one flow at a time, and
the order in which these flows are handled greatly affects these decisions. Ge-
netic algorithms have proven good at rapidly searching spaces of permutations,
and hence we use one to find the ordering of flows that produces the best overall
score.

This general approach is a common one for genetic-algorithm-based scheduling and
was first described by Whitley et al. [20] and Syswerda [17]. A fast schedule builder
incrementally constructs a schedule one job/task at a time with different schedules



Optimizing Routing and Backlogs 5

resulting from different presentation orders of the jobs/tasks; a genetic algorithm
optimizes the presentation order. The details of the optimization algorithm are pre-
sented in Section 3. Experiments that demonstrate the effectiveness and good scaling
properties of the algorithms are described in Section 4.

2 Problem Definition

We now discuss the various components of the problem definition.

2.1 Jobs, Tasks and Flows

Fig. 1.A sample compute job consisting of six steps/tasks.

Compute jobs consist of a set of steps, or tasks, which are the atomic units of
computational work to be performed. Each step must be executed in sequence, so a
task cannot begin until its predecessor has completed. Figure 1 illustrates a job with
six tasks labeled A-F, which is the standard task breakdown for all jobs in the experi-
ments described below. Each task is assigned to and executed by a single cluster, but
the various tasks in a job can be, and generally will be, assigned to different clusters.
Therefore, a job will in general visit a sequence of clusters, which means that it will
follow a route through the distributed system of computational resources.

Each job is part of a job flow. The jobs in a flow are homogeneous, i.e. they all
possess the same properties. These include

• the sequence of tasks to execute
• the mean execution time of each task
• the mean lifespan of the job, i.e. the time between the arrival time and the dead-

line
• utility, i.e. how important it is to accomplish the job before the deadline
• the routing constraints, which specify for each task which clusters are allowed

to be assigned to that task (The constraints can arise from a variety of causes
including network connectivity and the inherent capabilities of the clusters.)

The jobs in a flow enter the system with a known mean time between arrivals.

2.2 Resources and Clusters

A cluster is an aggregation of individual compute resources together with a manager
to distribute the tasks among the resources and a local scheduler that decides how to
assign the tasks to resources. In the work described here, we are not performing the



6 Montana and Zinky

Fig. 2.Example load-to-throughput map for a cluster.

local scheduling but rather just the metascheduling, i.e. the routing of jobs between
the clusters. To support the metascheduler, we do need a model of the behavior of a
local scheduler.

Not all jobs/tasks that enter a cluster can be completed by the cluster, as each
cluster has a finite capacity. We define thecapacityof a cluster as the maximum
number of task-seconds (where a task-second is the amount of computation accom-
plished on a single task by a “standard” compute engine) that can be completed every
second. If the cluster consists of all “standard” resources, then the capacity equals
the number of resources. Theload on a cluster is the number of task-seconds enter-
ing the cluster per second, or alternatively, this quantity normalized by dividing by
the capacity. Thethroughputof a cluster is the number of task-seconds of processing
completed per second, or alternatively, this quantity normalized by dividing by the
capacity. The average (normalized) throughput is constrained to be less than 100%
and less than the average load.

We characterize the aggregate behavior of a cluster and its local scheduler using a
piecewise-linear load-to-throughput mapping, which specifies the expected through-
put for a given load. Figure 2 shows an example of such a mapping, which is the
one that we used for all the clusters of the experiments described below. To deter-
mine which tasks are the ones that are completed, we order the tasks according to
the utility of their jobs. The highest-utility tasks are completed at a rate equal to the
throughput-to-load ratio of just these tasks, the next-highest-utility tasks at a rate
which is the ratio of the additional throughput to the additional load, and so on.

Each cluster has aninput queueand anoutput queue. Jobs wait in the input
queue until a resource becomes available. The output queue is for backlog, where
jobs can be saved until a future time when they are released for the next step in their
processing sequence. Any job whose deadline passes while waiting in a queue is
removed from the queue and discarded.

2.3 Routing/Backlog Policies and Routing Constraints

A routing/backlog policydetermines the decisions for where (i.e., at which cluster)
and when the steps of each job are executed. A policy for a given job flow is repre-
sented as a set of probabilities. For each step of a job in the flow, the policy specifies
for each cluster the probability that the step will be executed at that cluster, as well



Optimizing Routing and Backlogs 7

Fig. 3.Graphical depiction of a routing/backlog policy for a flow.

as the probability that the job will instead be held in backlog until a future time. Jobs
held in backlog are released back into the system and re-evaluated when the routing
policy is updated. Figure 3 illustrates a sample routing policy for a job flow whose
jobs have six steps.

The routing/backlog policy is the one aspect of the system under external con-
trol and is what we can vary to optimize the performance of the system. Section 3
discusses how to determine an optimal routing/backlog policy.

Routing constraints limit the possibilities of which clusters can have non-zero
probabilities. For each step of each job flow, there is a list of legal clusters that
are allowed to handle this step. These constraints can reflect underlying constraints
of the system, such as limitations on network connectivity, or can serve to aid the
optimization process (either automated or manual) by limiting the choices available
and hence reducing the size of the search space.

2.4 Epochs and Time Dependence

An epoch is a time interval over which we can assume that all aspects of the system
remain constant. This includes the job flows and all their properties, and the clusters
and their capacities. We say that the routing policies will remain the same throughout
an epoch, as there is no reason for them to change, although the policies will in
general change at epoch boundaries. This assumption of piecewise constant behavior
for the system allows us to apply a model based on mean-value analysis, as discussed
in Section 2.5.

The changes in the properties of the job flows and clusters across epochs reflect
predictions about how the loads and capacities will vary with time. For example, in
Section 4 we will consider job flows whose arrival rates follow a 24-hour cyclical
pattern, with arrival rates higher during the local daytime and lower during the local
nighttime. Similarly, knowledge of future scheduled service times for a resource can
be reflected by changing the capacity of its cluster in future epochs. Predictions of
future conditions are important for determining not just future policy but also current
policy, since backlogs and deadlines can extend across epoch boundaries.

2.5 Evaluation Function

To evaluate the effectiveness of a particular policy, we simulate the system with this
policy in place. The simulation does not consider individual jobs but rather examines



8 Montana and Zinky

the aggregate flows using a mean-value analysis. The results of the simulation can
be scored using an optimization criterion.

The simulator propagates each flow in each epoch over a multipath route through
the network of clusters. It multiplies the system arrival rate of a flow by the probabil-
ity of the first step being assigned to a cluster to obtain the rate of the flow entering
this cluster at this step. Similarly, multiplying the system arrival rate by the probabil-
ity of backlog for the first step yields the rate at which the flow is backlogged before
its first step is executed. If more than one of the probabilities is non-zero, the flow
will split along multiple paths, which is why we refer to the route as multipath. The
simulator uses the load-to-throughput map for a cluster to determine the output rate
of the flow following this step. This process is continued for the subsequent steps,
with the cumulative throughput for step N multiplied by the probabilities for step
N+1 to give the input rates at the various clusters for step N+1.

While the simulator is relatively simple, there are a few details that complicate
it. One is the need sometimes to retract throughput that has been allocated to a flow.
If a cluster that handles a flow is then assigned a new flow of utility greater than or
equal to that of the original flow, it may be that the original flow loses some of its
throughput to the new flow. When this happens, there is in general a chain reaction,
since downstream steps of the original job now have lower rates, which in turn can
allow other flows to grab some of the forfeited throughput, and so on. The simulator
propages these perturbations until they die out.

A second detail is what happens to jobs that are backlogged or waiting in queues
across epoch boundaries. Such jobs are added to the flows at the appropriate step in
the process for the new epoch, with flow rates that cumulatively across the epoch
would integrate to the right number of jobs.

The goal is to minimize the number of dropped jobs, i.e. jobs not completed
within their deadline, with an emphasis on not dropping higher-utility jobs. There-
fore, the primary component of the optimization criterion is the sum of the utilities
of all the dropped jobs. A secondary component of the optimization criterion is a
penalty for delaying the execution of jobs into future epochs. The rationale is that
the strategy of backlogging jobs for the future depends on the future occurring as
predicted, which it often will not in a dynamic environment, so there is benefit to
finishing a job earlier rather than later. Optionally, we can add other penalties, such
as one for jobs traveling between clusters in order to minimize network traffic, but
we do not consider these other types of penalties in this paper.

We now provide a mathematical definition of the optimization criterion. From
the viewpoint of individual jobs (as opposed to job flows), the criterion is∑

j∈Jd

u(j) +
∑
j /∈Jd

u(j)(1− P t(j)) (1)

whereJd is the set of all dropped jobs (i.e. jobs that did not complete before their
deadline),u(j) is the utility of job j, t(j) is the time in the future at whichj is
completed, andP < 1 is a constant whose role is to penalize the deferral of jobs to
the future. This translates into the following formula at the flow level



Optimizing Routing and Backlogs 9∑
e∈E

P t(e)(
∑

f∈F (e)

u(f)[d(f) + b(f)(1− P τ(e))]) (2)

whereE is the set of all epochs,F (e) is the set of all job flows during epoche, t(e)
is the start time ofe, u(f) is the utility of flow f , d(f) is the rate at which jobs in
flow f are dropped,b(f) is the rate at which jobs inf are backlogged, andτ(e) is
the duration of epoche.

3 Scheduling Algorithm

The policy optimization algorithm has three levels, with each of the lower two levels
feeding results to the next higher level. We now present these.

3.1 Level 1: Single-flow, single-epoch optimization

This component determines a routing/backlog policy for the jobs from a single flow
entering the system during a single epoch. If a flow is small enough, then a single
set of decisions is used for all the jobs in the flow, i.e. for each step the policy has a
single non-zero probability and hence all the jobs follow the same route. The test for
whether the flow is small enough is whether the flow cannot load any cluster more
than x% of its capacity, where we have used x=20%.

Alternatively, if the flow is large, i.e. can produce a load of more than x% on
a cluster, it is instead split into N identical smaller subflows, where N is just large
enough to reduce the maximum load on a cluster below the threshold. A single-path
route is determined for each of these subflows independently and in succession. The
results are then aggregated into a single policy, or equivalently a multipath route,
using probabilities to specify what fraction of the flow follows each path. Splitting
large flows allows the routing to distribute the load across multiple clusters, which
may be necessary for efficiently handling the flow.

We now discuss how to determine the single-path route for one of these indivis-
ible subflows. For each step/task in the process, there are two decisions to make: (i)
to which cluster to assign the tasks and (ii) in which epoch to execute the tasks (i.e.,
how long, if at all, to backlog the tasks). The former is done using a purely greedy
approach; in the epoch of choice, select the cluster for which the overall penalty (i.e.,
the increase in the value of the optimization criterion) is minimized by the assign-
ment. Note that the assignment of a flow to a cluster can result in another flow losing
throughput at this cluster, and this effect is accounted for in the optimization criterion
and hence the greedy selection.

The selection of the epoch in which to execute each step of a flow’s processing
chain (i.e., decisions about backlog policy) is done using dynamic programming.
The rationale is that the choice to postpone the processing of one step can have large
consequences for downstream steps that cannot be foreseen when deciding about the
current step. So, instead of a greedy selection of the epoch for each step one at a time,
we perform a more computationally intensive optimization over all combinations of



10 Montana and Zinky

Fig. 4. Assignment of a single flow uses dynamic programming to select an epoch for each
step. A step can be assigned to any epoch not earlier than that for the previous step.

legal selections of epochs for each step. Note that an epoch is legal for a step if it is
not earlier than the epoch of the previous step and not later than the deadline of the
flow.

The combinatorics of considering all possible combinations of epochs per step
means that it is important to find an efficient optimization technique. Dynamic pro-
gramming is such a technique because it (i) eliminates entire branches of the search
tree early in the process and (ii) pursues the most promising branches first. The first
branch point in the search tree is based on the selection of the epoch for the first step,
with subsequent branch points under each of these branches based on the selection of
the epoch for the second step, etc. The different branches correspond to the different
paths through the graph shown in Figure 4. For each epoch E and step S, the search
procedure eliminates all but the single best path leading up to the selection of epoch
E at step S, which quickly prunes many branches. Furthermore, since the penalty
(i.e., change in the optimization criterion) is non-decreasing with each step, we can
restrict the search to pursuing only the path with the lowest penalty so far, declaring
the search finished when a path that has completed all the steps has a score less than
or equal to the score of any partial path.

3.2 Level 2: Multi-flow, single-epoch optimization

Using the single-flow route optimizer, we can define what we call therapid route
builder, which creates an entire set of routes, i.e. a full set of routing/backlog poli-
cies, for the jobs flows in an epoch. Given an ordering of the flows, the rapid route
builder uses the single-flow optimizer to create the routes for each flow in succes-
sion in the order given. Due to interactions between the flows, the policies produced
are potentially very different depending on the order in which the flows are routed.
Therefore, finding the best ordering of jobs to feed the rapid route builder is an opti-
mization problem we need to solve.

To perform this optimization, we use an order-based genetic algorithm. The de-
velopment of order-based genetic algorithms [5, 7] was inspired by the recognition
that for problems like the traveling salesman problem, the goal is to find the best
ordering of N objects. Its chromosome is a direct representation of a permutation of
N objects, labeled 1 through N, and its operators are designed to manipulate chro-
mosomes of this type. Order-based genetic algorithms have been demonstrated to be



Optimizing Routing and Backlogs 11

very effective and efficient at searching the space of permutations, which is why we
have chosen this technique.

Fig. 5.The crossover and mutation operators. The *’s indicate the randomly selected positions
that remain fixed in the (first) parent.

The crossover operator used by the genetic algorithm is position-based crossover
[17], and its operation is illustrated in Figure 5. It works as follows. A set of positions
is randomly selected (which in the example of Figure 5 are positions 4, 6 and 7). The
elements at these selected positions in the first parent (which in the example are the
integers 4, 6 and 7) are maintained at these positions in the child. The remaining
elements (which in the example are the integers 1, 2, 3 and 5) are used to fill in the
remaining slots in the child, but will in general be at different positions in the child
than in the first parent. The order of these elements in the child will be the same as
their order in the second parent (which in the example means that 2 is placed in the
first empty position, followed in order by 5, 1 and 3).

Also illustrated in Figure 5 is the mutation operator. It works the same as the
crossover operator except without a second parent to provide the ordering for the
subset of elements that are reordered in the child. Instead, the new order of the shuf-
fled elements is randomly selected.

Each member of the initial population is generated by selecting a random order-
ing. The flow of operations of the genetic algorithm is shown in Figure 6.

The genetic algorithm is steady-state, which means that it generates and replaces
one individual at a time rather than an entire population. The advantage of a steady-
state replacement strategy is that the search generally proceeds faster, since the ge-
netic algorithm can use good individuals as soon as they are created rather than wait-
ing for generational boundaries. Since there are no generations, the amount of work
done by the search algorithm is measured by the number of individuals evaluated.

Two key parameters that control performance are the population size and the
number of evaluations. Increasing them increases the expected quality of the solu-
tion found, at the expense of increasing the search time. Hence, the selection of these
parameters controls the inherent tradeoff between solution quality and search time.
We have found empirically for this problem that it is generally good to have the
number of evaluations five times the population size, since on average this provides
enough time for the search to converge without spending too much time at the end
of the run stuck without making progress. So, for each run, we specify the number
of evaluations and automatically set the population size to be one-fifth of that quan-
tity. In general, the number of evaluations (and population size) needs to be larger
when there are more flows, since the search space is larger. However, we can choose



12 Montana and Zinky

Fig. 6.The operation of the genetic algorithm.

a smaller number of evaluations and quicker search time in exchange for a worse
expected solution. This ability to shorten the search is important, since the policy
optimizer is potentially used adaptively to update the routing policy in real time (in
response to an unexpected change in operating conditions such as a surge in load or
disabled resources). Note that taking advantage of the inherent parallelism of genetic
algorithms by using multiple processors can also improve the execution speed, but
without sacrificing solution quality.

3.3 Level 3: Multi-epoch optimization

Fig. 7. The optimization algorithm starts by optimizing the routing policies for the last epoch
and working backwards.

This component of the optimization algorithm steps through the epochs one at a
time and executes the Level 2 optimization for all the flows in the current epoch. It
starts with the final epoch and works backwards in time, as shown in Figure 7. The
rationale for working backwards in time is that flows from a particular epoch can be



Optimizing Routing and Backlogs 13

postponed to the future, hence requiring knowledge of the future loads on the clusters
to make good decisions about whether to backlog the flows or not. Furthermore, the
earlier epochs are the more important ones to do correctly, since they will be the ones
executed first without the opportunity for revision.

The result of the entire process is a set of routing/backlog policies, one for each
epoch. While these generally will be good policies, usually optimal or near optimal,
there are three places in the process which can lead to suboptimality:

• The best policy for an epoch is not guaranteed to be generated by any job ordering
fed to the rapid route builder.

• The genetic algorithm is not guaranteed to find an optimal ordering, since it is a
heuristic search technique.

• Optimizing each epoch in succession rather than all in single large optimization
is potentially suboptimal.

What our approach does provide is a good tradeoff between finding a good solution
and keeping the search time relatively small, so that using this procedure is actually
practical even for large distributed systems. In the next section, we demonstrate ex-
perimentally both the ability to find good policies and the relatively rapid execution
times even as the problem size grows.

4 Experiments

We start with a set of experiments that show that the approach just described finds
the right solution on a set of problems for which we can determine a good solution
by analysis. The next experiments examine the scaling properties of the approach,
i.e. how the performance, and in particular the execution speed, of the algorithm
increases as the problem size increases.

4.1 Sample Scenario and Perturbations

This set of experiments involves a relatively small (though not trivially small) prob-
lem containing 24 job flows and 18 clusters and lasting for 6 epochs. Because of
its symmetries, this particular problem lends itself to analysis by a human, so we
can determine whether our approach finds a good solution. Perturbing the problem
causes the optimal strategy to change. We introduce perturbations that include losses
of resources in the present, anticipated losses of resources in the future, and surges
in the loads, and we verify that the algorithm makes the proper adjustments to the
policy.

Baseline Problem -We now describe the initial problem on which we test our
approach. There are 18 clusters in total. Each cluster is specialized to handle one of
the six steps of the jobs, whose sequence of steps is shown in Figure 1, with three
clusters per step. Each cluster has a capacity of 13, with the underlying assumption
that there are 13 identical compute resources aggregated at each cluster. The load-to-
throughput map for each cluster is that shown in Figure 2.



14 Montana and Zinky

Fig. 8.The topology of the clusters is determined by the routing constraints on the flows. Steps
A-C must all be performed in a prespecified one of the three spokes, while steps D-F can be
performed in any of three clusters in the hub.

The routing constraints of the job flows induce an inherent connectivity on the
clusters, which is the hub-and-spokes configuration shown in Figure 8. The first three
steps, i.e. steps A-C of a job flow, are constrained to be executed in one of the three
spokes. For example, some of the job flows are constrained to spoke 1, and hence
must be assigned to clusters 1A, 1B and 1C for their first three steps. The final three
steps, steps D-F, are handled in the hub, and the job flow is free to be assigned to any
of the three clusters specializing in that step.

Fig. 9.The six different arrival rate patterns and their associated spikes

There are 24 different job flows. The job flows have all different combinations of
the following three properties.

• There are two different utilities, high (numerical value = 2) and low (numerical
value = 1).

• There are two different deadlines, short (numerical value = 1 hour) and long
(numerical value = 16 hours).

• There are six different arrival rate patterns, i.e. arrival rates as a function of time.
These are pictured in Figure 9. The six patterns are all cyclical over 24 hours and
all essentially the same pattern with different offsets, so that the peaks and valleys



Optimizing Routing and Backlogs 15

of each are at different times. (This captures in an idealized form the daily cycles
in usage requests, with more requests during the local daytime.) Each pattern
is associated with a particular spoke, with two patterns adjacent in their offsets
assigned to each spoke.

The six steps in every job flow each require one minute to complete.
There are six epochs each of duration four hours. The entire problem covers a

24-hour period. The result of the optimization will be six routing/backlog policies,
one for each epoch.

An analysis of this scenario yields the following. During epoch 1, spoke 1 if
overloaded. There are eight flows associated with spoke 1, and each of the flows
has arrival rate of 2 jobs/minutes. Therefore, there is an aggregate arrival rate of
16 jobs/minute that are constrained to use the clusters in spoke 1. These clusters
have a capacity of 13 jobs/minute, and a maximum throughput of even less. So, not
all these jobs can be processed during the first epoch. If all these jobs are allowed
to enter the clusters, as opposed to being backlogged until future epochs, the high-
utility flows will receive most of the throughput, with the low-utility jobs waiting in
the input queues. Most of the low-utility, short-deadline jobs will time out and hence
be dropped.

So, a better strategy is to backlog enough long-deadline flows from spoke 1 at
the entry to the system to allow the short-deadline flows to all complete in the first
epoch. These long-deadline jobs are released from backlog into the clusters of spoke
1 during epochs 3 and 4, when the there is spare capacity compared to the load due
purely to arrivals.

Spoke 2 is similarly overloaded in epochs 2-4, with a peak in epoch 3. Hence, the
best strategy is to backlog the flows from spoke 2 during epoch 3 and release them
during epochs 5 and 6, when the arrival load is lightest.

The arrivals for spoke 3 peak during epoch 5. Because there are no epochs in-
cluded beyond epoch 6, there is no advantage to backlogging the flows here, and
hence the best strategy is to let all the jobs into the system and allow the local sched-
ulers to give first priority to the high-utility jobs. [A lesson here is that it is important
to include enough epochs beyond the last epoch whose optimized policy might actu-
ally be used so that all policies of interest are not influenced by this type of “boundary
effect”.]

As partially illustrated in Figure 10, the results from the optimization were as
expected from the analysis, so the algorithm found an approximately optimal set of
policies.

Perturbation 1: Current Loss of Hub Cluster - This scenario is the same as the
baseline problem except with the capacity of cluster 1E set to zero for epochs 1 and
2. In the hub, unlike in the spokes, there is a choice of multiple clusters for each step
of the job flows, and tasks that would have been assigned to the missing cluster can
instead be sent to the two alternative clusters, 2E and 3E. Because the two clusters
cannot quite handle the full load, some of the long-deadline jobs are backlogged
until the anticipated return of the disabled cluster. Optimizing the policies produces



16 Montana and Zinky

Fig. 10. A graphical depiction of the results for the baseline problem set. For each spoke in
each epoch, the figure shows the relative size of the backlog (B), dropped jobs (D), aggregate
arrival rate (A), cluster loads (L), and cluster throughputs (T). The units for A, L and T are
jobs/minute, while those for B and D are jobs.

the expected behavior; this demonstrates how our approach can be used to modify
the routing policy to adapt to changes in the distributed system.

Perturbation 2: Future Loss of Spoke Resources -This scenario is the same as
the baseline except with the capacity of cluster 1B set to 6 instead of 13 in epochs 3-
6. This anticipated future loss of resources changes the current (i.e., epoch 1) optimal
backlog policy for the job flows associated with spoke 1. Since there no longer will
be excess capacity available in the future, the best current policy is to complete the
high-utility jobs and allow some of the low-utility jobs to be dropped. Our algorithm
finds this new optimal policy, demonstrating the ability to adapt current policy to
anticipated future changes in the distributed system.

Perturbation 3: Surge in Load in a Spoke -This scenario is the same as the
baseline except one of the high-utility, long-deadline job flows in spoke 1 has an
arrival rate that is increased from 2 jobs/minute to 5 jobs/minute during epochs 1
and 2. This surge means that the optimal backlog policy for spoke 1 now has to
focus on completing all the high-utility jobs, letting the low-utility jobs be dropped
during the first four epochs. Some of the additional high-utility jobs that are part
of the surge are immediately sent to the clusters for processing, while others are
backlogged until there is excess capacity in fuure epochs. Note that low-utility jobs
continue to be dropped even after the surge has ceased in order to handle the backlog
of high-utility jobs accumulated during the surge. Our approach finds this new policy,
demonstrating the ability to adjust policy to adapt to changes in the load.

The solutions are generated within roughly 12 seconds on a single 2.8GHz CPU,
showing that the approach not only finds a good solution but does so in a reasonably
short time.

4.2 Scaling Properties

It is important to understand how our approach performs not just on relatively small
problems but also on larger problems. A second set of experiments investigate the
scalability of the algorithm, i.e. how increasing the size of the problem affects the
algorithm’s performance.



Optimizing Routing and Backlogs 17

The problem size can vary along multiple different dimensions. We have identi-
fied what the different dimensions of problem scale are, and we have developed the
capability for varying the problem size along one dimension at a time. This allows us
to investigate the effects of changing only one, or some subset, of these dimensions,
as well as all of them simultaneously. We now enumerate these different dimensions
along with our theoretical analysis of how they effect search time:

• (average) number of legal clusters per task -For each task, the greedy selection
process needs to evaluate the effect on the optimization criterion of assigning that
task to each legal cluster. Since each such evaluation is independent of the others,
the total time required is proportional to the number of legal clusters to evaluate.
Therfore, the overall search time should scale linearly along this dimension.

• total number of epochs -For each epoch, the algorithm needs to perform a
separate genetic algorithm run. These runs are independent, so the execution time
should scale linearly in this dimension.

• (average) number of epochs before a job’s deadline -For each step of the dy-
namic programming process, i.e. each task in the job, the algorithm maintains po-
tentially one branch for each epoch before the deadline. For the next step of each
branch, it can explore a number of branches that is on average half as many as
the number of epochs before the deadline. So, the algorithm potentially scales as
a square of this dimension. However, in practice, dynamic programming should
eliminate most of these potential branches, and the scaling could be closer to
linear.

• (average) number of steps per job -The dynamic programming process needs
to take one more step in its chain for each step in the job. Since these steps are
largely independent, we would predict linear scaling in this dimension.

• number of job flows - There are two ways that the number of job flows effects
search time. For each individual in the genetic algorithm, the rapid route builder
needs to route this many flows. Each flow is mostly independent (although not
entirely independent because of competition for throughput at the clusters), so
the time should increases linearly. Secondly, increasing the number of job flows
increases the number of possible orderings of these flows, and hence the size of
the search space for the genetic algorithm. This will increase the number of indi-
viduals the genetic algorithm must evaluate to find a near optimal one. Based on
past experience with order-based genetic algorithms, we predict that the increase
in the required number of evaluations is between linear and quadratic, but this is
problem-dependent and can only be determined empirically.

Additionally, there can be assorted costs or savings due to secondary interactions.
For example, a decrease in the capacity of each cluster can cause the flows to be
split into more subflows during the rapid schedule building process, hence leading to
longer execution times.

We have devised methods to increase the scale in one of these dimensions at a
time maintaining approximately the same optimization problem.

• To increase the number of legal clusters per task by a factor of N, replace each
cluster in the original problem with N clusters, each with 1/N times as much



18 Montana and Zinky

capacity as the original. For every task for which the original cluster was legal,
make all N new clusters be legal.

• To increase the number of epochs, convert each epoch in the original problem into
N epochs identical to the original except with duration 1/N as long. Note that this
changes both the total number of epochs and the number of epochs before the
deadline by a factor of N.

• To increase the number of steps per job, convert each step of each job flow of the
original problem into N steps identical to the original, in particular allowing the
same legal clusters, except each requiring 1/N the time to complete.

• To increase the number of job flows, convert each job flow into N job flows each
identical to the original except with arrival rate 1/N of the original rate.

We have applied these transformations to the baseline data set described in Sec-
tion 4.1. For each transformed data set, we measure three quantities. One is the
amount of time required for the full optimization to execute with the number of
evaluations for the genetic algorithm specified to be 100. This measures the change
in exeucution time of the rapid route builder. The second quantity is the number of
evaluations required of the genetic algorithm to reach a near optimal solution. We
determine this value by executing with different numbers of evaluations and finding
at what point the result stops improving significantly (no more than 1%). The third
quantity is the time required to reach this near optimal solution, which should ap-
proximately equal the product of the first two quantities divided by 100. These three
quantities are shown in the following table for each of the datasets. Note that all runs
are performed on the same single machine with a single 2.8GHz processor.

Dataset Description100-Eval Time (secs)Evals for Optimum Time for Optimum
baseline 12 100 12

10x clusters 166 100 166
10x flows 352 8000 28160

10x epochs 1091 100 1091
10x steps 358 100 358

10x clusters
720 4000 28800

10x flows
2x clusters

406 250 837
2x flows

2x epochs
2x steps

Table 1.Results of the scaling experiments.

The results are largely as predicted with a few exceptions, which we now discuss.
Perhaps the biggest deviation from predicted behavior is when the number of flows
is increased by a factor of ten (10x flows). This leads to an 100-evaluation execution
time that is 30 times larger than that for the baseline problem. This execution time
was predicted to be linear in the number of flows, and hence we would have instead



Optimizing Routing and Backlogs 19

expected a factor of 10. A possible explanation is that increasing the flows without
increasing the number of clusters resulted in ten times as many flows at each cluster,
leading to overhead in accounting, most importantly the propagation of retracted
throughput, for all these flows. Note that when the number of flows and the number
of clusters are both increased by a factor of ten, the 100-evaluation execution time is
only increased by a factor of 60, which is even less than the factor of 100 predicted.

If the problem is such that the time it takes to optimize is longer than the desired
time, there are some techniques to reduce the search time. The simplest is just to re-
duce the number of evaluations of the genetic algorithm, accepting the lesser quality
of the solution. A similar method that may sacrifice less of the solution quality is
based on the recognition that epochs further in the future are less important to opti-
mize well than epochs closer to the present. Therefore, using less evaluations for the
genetic algorithm on these future epochs leads to faster execution with an acceptable
decrease in solution quality. An alternative method to decreasing optimization time
is to decrease the number of epochs, number of flows, etc. by merging them, blurring
some of the finer distinctions of the model (and hence the quality of the solution
when applied to the real system), but decreasing the problem size. Again, this tech-
nique can be applied more heavily to the epochs further in the future to reduce the
effects on the policies that need to be in place soon.

5 Conclusion and Future Work

We have defined a problem involving optimizing the routing and backlog policy of
a large distributed computing system. Our approach to this scheduling problem in-
volves a combination of dynamic programming and a genetic algorithm. This ap-
proach allows the optimization to proceed rapidly over a large search space while
still finding good solutions. One set of experiments has proven the ability of the ap-
proach to find an optimal policy, while another set of experiments has demonstrated
its scalability.

We have integrated this policy optimization algorithm into a prototype design
tool and demonstrated its effectiveness on sample problems; the next steps involve
moving this tool into an operational setting. Initially, it would be used offline with
data collected from a functioning enterprise grid used to define the optimization
problem. The ultimate goal is to integrate this policy optimization algorithm into
an online adaptive controller that adjusts routing/backlog policies in real time based
on automated data feeds.

References

1. Andresen, D. and T. McCune: 1998, ‘Towards a Hierarchical Scheduling System for Dis-
tributed WWW Server Clusters’.Proceedings of the The Seventh IEEE International
Symposium on High Performance Distributed Computing.



20 Montana and Zinky

2. Barolli, L., A. Koyama, K. Matsumoto, T. Suganuma, and N. Shiratori: 2002, ‘A Genetic
Algorithm Based Routing Method Using Two QoS Parameters’.Proceedings of the 13th
International Workshop on Database and Expert Systems Applications.

3. Bose, A., B. Wickman, and C. Wood: 2004, ‘MARS: A Metascheduler for Distributed Re-
sources in Campus Grids’.Proceedings of the Fifth IEEE/ACM International Workshop
on Grid Computing.

4. Casetti, C., R. Cigno, and M. Mellia: 1999, ‘QoS-Aware Routing Schemes Based on
Hierarchical LoadBalancing for Integrated Services Packet Networks’.Proceedings of
the IEEE International Communication Conference.

5. Goldberg, D. and J. R. Lingle: 1985, ‘Alleles, Loci, and the Traveling Salesman Problem’.
Proceedings of the First International Conference on Genetic Algorithms. pp. 154–159.

6. Goswami, K., M. Devarakonda, and R. Iyer: 1993, ‘Prediction-Based Dynamic Load-
Sharing Heuristics’.IEEE Transactions on Parallel and Distributed Systems.

7. Grefenstette, J., R. Gopal, B. Rosmaita, and D. van Gucht: 1985, ‘Genetic Algorithms for
the Traveling Salesman Problem’.Proceedings of the First International Conference on
Genetic Algorithms. pp. 160–165.

8. Grimme, C.: 2007, ‘Grid Metaschedulers: An Overview and Up-to-date Solutions’. Pow-
erPoint presentation.

9. Key, P. and L. Massoullie: 2006, ‘Fluid Models of Integrated Traffic and Multipath Rout-
ing’. Queueing Systems: Theory and Applications53(1-2), 85–98.

10. Lo, V., D. Zhou, D. Zappala, Y. Liu, and S. Zhao: 2004, ‘Cluster Computing on the Fly:
P2P Scheduling of Idle Cycles in the Internet’.International Workshop on Peer-to-Peer
Systems.

11. Mausolf, J.: 2005, ‘Grid in Action: Managing the Resource Managers’.IBM developer-
Works.

12. Okuhara, K., T. Tanaka, and H. Ishii: 2003, ‘Routing and Flow Control by Genetic Algo-
rithm for a Flow Model’.Systems and Computers in Japan34(1), 11–20.

13. Othman, O. and D. Schmidt: 2001, ‘Issues in the Design of Adaptive Middleware Load
Balancing’.Proceedings of the ACM SIGPLAN Workshop on Optimization of Middleware
and Distributed Systems. pp. 205–213.

14. Oueslati, S. and J. Roberts: 2006, ‘Comparing Flow-Aware and Flow-Oblivious Adaptive
Routing’. 40th Annual Conference on Information Sciences and Systems. pp. 655–660.

15. Stone, H.: 1977, ‘Multiprocessor Scheduling with the Aid of Network Flow Algorithms’.
IEEE Transactions on Software EngineeringSE-3(1), 85–93.

16. Strong, P.: 2005, ‘Enterprise Grid Computing’.ACM Queue3(6).
17. Syswerda, G.: 1991, ‘Schedule Optimization Using Genetic Algorithms’. In: L. Davis

(ed.):Handbook of Genetic Algorithms. Van Nostrand Reinhold, pp. 332–349.
18. Thain, D., T. Tannenbaum, and M. Livny: 2005, ‘Distributed Computing in Practice: The

Condor Experience’.Concurrency and Computation: Practice and Experience17(2-4),
323–356.

19. Vadhiyar, S. and J. Dongarra: 2002, ‘A Metascheduler for the Grid’.Proceedings of the
11th IEEE International Symposium on High Performance Distributed Computing.

20. Whitley, D., T. Starkweather, and D. Fuquay: 1989, ‘Scheduling Problems and Travel-
ing Salesmen: The Genetic Edge Recombination Operator’.Proceedings of the Third
International Conference on Genetic Algorithms. pp. 133–140.


