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Abstract

Previously, general models of the kinematics of multi-fingered manipulation have only treated instan-
taneous motion (i.e., velocities). However, such models, which ignore the underlying configuration (or
state) space, are inherently incapable of capturing certain properties of the fingers-plus-object system
important to manipulation. In this paper, we derive a configuration-space description of the kinemat-
ics of the fingers-plus-object system. To do this, we first formulate contact kinematics as a “virtual”
kinematic chain. Then, the system can be viewed as one large closed kinematic chain composed of
smaller chains, one for each finger and one for each contact point. We examine the underlying configu-
ration space and two ways of moving through this space. The first, kinematics-based velocity control,
is a generalization of some previous velocity-based approaches. The second, hyperspace jumps, is a
purely configuration-space concept. We conclude with a discussion of how these concepts can be used
to understand the task of twirling a baton [6].

1 Introduction

A robot hand with multiple fingers grasping an object is a complex system whose kinematics are difficult
to model. Each finger is an independent kinematic chain with multiple degrees of freedom. Plus, there
are additional degrees of freedom asociated with the relative motion of the object and finger at each point
of contact. (As we discuss in Section 2.3, each point of contact contributes five degrees of freedom.) The
degrees of freedom add up very quickly even for simple hands. For example, the Stanford/JPL hand [18],
which has three fingers with three joints each, has 9 finger degrees of freedom and 15 contact degrees of
freedom for a total of 24 degrees of freedom. Complicating things further is the fact that the contact degrees
of freedom are passive, i.e. they do not have an associated actuator to control them directly. Therefore,
they require indirect control via appropriate kinematic and/or dynamic constraints. However, despite the
inherent complexities, there has been significant progress in developing models of the kinematics of multi-
fingered manipulation appropriate for control. We now summarize some previous work in this area and
then present an overview of the contributions of this paper.

1.1 Previous Work

We can divide the general approaches to multi-fingered manipulation into two categories, those which focus
solely on velocity and those which deal with configuration-space issues. The velocity-based approaches can
be further divided into those which use purely kinematic control and those which rely on dynamic control.
(By kinematic control, we mean that the state of the fingers-plus-object system is completely determined
by the state of the finger joints and hence can be controlled by controlling the finger joints. By dynamic
control, we mean the opposite, i.e., that the state of the full system depends on dynamic quantities as
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well as the state of the finger joints.) Finally, the velocity-based approaches can also be divided into those
which control the location of the object and those which control the position of the points of contact.

The majority of the work in multi-fingered manipulation has been of the kinematics-based, velocity-
based, object-control variety. Salisbury [18] was the first to provide a method to convert a desired velocity
for an object in the grasp of multiple fingers to the joint velocities of the fingers needed to achieve this object
velocity. He defined the grasp matrix as a way to transform from object velocity to fingertip velocity. Kerr
and Roth [11] added the following observations. First, they explicitly stated that the contact degrees of
freedom are instantaneously equivalent to a spherical joint (and hence form what we call a “virtual joint”)
when the contacts are (in Salisbury’s nomenclature) point contacts with friction. Second, they showed
that the points of contact move across the object and fingertips during manipulation and incorporated this
motion of the points of contact into their formulation. Hunt and Torfason [8] introduced the concept of
the fingers-plus-object system as a closed kinematic chain with the contact degrees of freedom as spherical
joints in this mechanism, and Hunt, Samuel and McAree [9] have analyzed special configurations of this
closed kinematic chain. (We take this idea of a closed kinematic chain from the velocity domain to the
configuration-space domain.) Li, Murray and Sastry [12], [17] discuss how the constraints on the system
need not be those for hard fingertips with friction but can be arbitrary kinematic constraints. (We generalize
even further to allow dynamic constraints.)

Some other velocity-based approaches are the following. The work by Montana [15], [14] is an example
of the kinematics-based, contact-control approach. It discusses how to control the positions of the points
of contacts for a two-fingered grasp with soft fingertips with friction. (We generalize this to arbitrary
constraints and an arbitrary number of fingers.) “Controlled slip” is an example of the dynamics-based
approach. In controlled slip, the velocities of the contact degrees of freedom are kinematically undercon-
strained and are hence determined by the dynamics of the system and the external forces and torques.
Brock [1] discusses the kinematics of controlled slip and in particular how to determine the subspace of
possible instantaneous motions for a given grasp configuration. Cole, Hsu and Sastry [5] go further and
model the dynamics of the system and thus provide a way to predict which of the possible velocities the
system will have. They use this to control the positions of the contact points.

Some work requiring a full configuration-space description is the following. Fearing [6] desribes the
task of twirling a baton. This requires disengagement of the fingers from contacting the object and re-
engagement in a different configuration (which we call a “hyperspace jump”), a maneuver which cannot
be described without a configuration-space formulation. Hong et al. [7] discuss the task of “striding,”
which uses four fingers to manipulate an object by grasping the object with one pair of fingers while
the other pair moves to a new grasp location and then reversing the roles of the two pairs. This task
also uses hyperspace jumps and hence requires a configuration-space description. Trinkle and Paul [19]
describe a method for adjusting the grasp configuration while lifting an object. The non-local nature of
the operation makes a configuration-space description necessary. Li and Canny [13] show that although
the (nonholonomic) constraints on the contact degrees of freedom from soft fingertip with friction (or point
contact with friction) constrain the velocities of the contact degrees of freedom to a proper subspace of
their possible values, it is still in general possible to reach all the points of the underlying configuration
space. They then show how to plan paths between any two points in the configuration space obeying
the constraints. Some of Brock’s work [1] on controlled slip deals with finite motions and hence with
configuration-space concepts.

A good summary of much of the work on multi-fingered manipulation is [17].
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1.2 Summary of Our Work

We derive a general description of the kinematics of multi-fingered manipulation which encompasses the
kinematic analyses of many of the approaches described above as special cases. (One way in which our
kinematic analysis is not fully general is that it assumes one contact point per finger and hence does not
include analyses such as that in [19].) We start with a discussion of background information in Section 2.
Section 2.1 briefly introduces basic concepts of rigid-body motion to establish terminology and notation.
Section 2.2 discusses kinematic chains and their representations as labeled graphs called Euclidean graphs.
Sections 2.1 and 2.2 largely follow the treatment of these subjects by Brockett [2]. Section 2.3 discusses
contact kinematics, which is the relationship between the relative motion of two objects and the motion of
their point of contact on their surfaces. This problem was originally solved by Montana [14], [15] and Cai
and Roth [3], and our treatment here largely follows that of [15] with the important difference that here
we formulate contact kinematics as a virtual kinematic chain.

Section 3 presents our description of the kinematics of multi-fingered manipulation. In Section 3.1, we
show how these kinematics can be represented as a large, closed virtual kinematic chain whose components
are the kinematic chains of the fingers and the virtual kinematic chains of the contact points. Section 3.2
discusses how the configuration space of the fingers-plus-object system is defined by the constraint that it
forms a closed kinematic chain plus a group of additional constraints which we call the generalized joint
limits. Sections 3.3 and 3.4 examine two ways to move throught configuration space using kinematics-
based control. The first, kinematics-based velocity control, describes the situation when all the fingertips
maintain contact with the object and the (unactuated) contact degrees of freedom and the object location
evolve continuously as a function of the joint velocities. The second, hyperspace jumps, describes the case
when some of the fingertips break contact with the object and then regain contact in another configuration.
Note that we do not discuss dynamics-based control in this paper even though many instances of it fit
within our general kinematic model. Section 3.5 examines the task of twirling a baton and how velocity
control and hyperspace jumps can be used to plan a trajectory through configuration space which solves
this task.

2 Background

2.1 Rigid-Body Motion

To represent the location (i.e., position and orientation) of a rigid body, we select a coordinate frame fixed
with respect to the object, which we call the object’s body frame. The relative location of two rigid bodies is
given by the unique rigid (i.e., length-preserving) transformation which maps the “reference” object’s body
frame to the “moving” object’s body frame. Such a transformation can be written as a 4x4 matrix of the

form T =

[
R ~d
0 1

]
, where R ∈ SO(3) (where SO(3) denotes the special orthogonal group in 3 dimensions,

i.e. the set of 3x3 rotational matrices) and ~d is a 3-vector. When we represent transformations in this form,
composing two transformations is equivalent to multiplying their matrix representations. Hence, if we have
three coordinate frames C1, C2 and C3, then T12T23 = T13, where Tij is the matrix representation of the
transformation from Ci to Cj . The set of all such transformations is the special Euclidean group in 3
dimensions SE(3).

As two rigid bodies move, their relative location will vary continuously as a function of time. This
motion defines a curve T : I → SE(3), where I ⊂ < is an interval and T (t) is the relative location at time
t. The velocity of the motion relative to the moving body frame is V = T−1Ṫ . We can always write V in
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the form V =

[
Ω ~vt
0 0

]
, where Ω, the rotational velocity, is a 3x3 skew-symmetric matrix (i.e. Ω ∈ so(3))

and ~vt, the translational velocity, is a 3-vector. The set of all matrices of this form is the algebra se(3).
The velocity transforms from one coordinate frame to another via the map

ad(T̃ ) : se(3)→ se(3), V 7→ T̃−1V T̃ (1)

where T̃ ∈ SE(3) is the transformation from the original coordinate frame to the new coordinate frame.
For example, the velocity relative to the reference body frame is

V ′ = ad(T−1)V = T (T−1Ṫ )T−1 = Ṫ T−1 (2)

We often prefer to write velocities as vectors rather than as matrices. If the rotational velocity matrix

is Ω =

 0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0

, then we define the rotational velocity vector as ~ω =

 ωx
ωy
ωz

. Note that the

map ∗ : <3 → SO(3) such that ∗~ω = Ω is called the Hodge * operator. To transform the 4x4 velocity

matrix V to the six-vector ~v =

[
~vt
~ω

]
, we define the map

γ1 : se(3)→ <6, V 7→ ~v (3)

Changing coordinates induces a linear transformation of the velocity. Hence, for the 6-vector representation
of velocity, any coordinate transformation can be represented as a 6x6 matrix. The function γ2, defined as

γ2 : SE(3)→ GL(6),

[
R ~d
0 1

]
7→
[
RT −RT (∗~d)
0 RT

]
(4)

maps the 4x4 representation of a transformation matrix to a 6x6 representation such that for all T ∈ SE(3)
and all V ∈ se(3),

γ2(T )γ1(V ) = γ1(ad(T )(V )) (5)

For further detail on this approach to rigid-body motion, see [2].

2.2 Euclidean graphs and kinematic chains

A Euclidean graph is a graph which has a coordinate frame associated with each node. We will use
Euclidean graphs to represent constrained motion of multiple rigid bodies. Each node represents a rigid
body, and an arc between two nodes represents a direct constraint on the relative motion of the two
corresponding bodies. Each constraint limits the possible relative motion of the two bodies to a family of
motions parametrized by a small number of variables. Hence, associated with each arc is a corresponding
family of motions and a chosen parametrization for this family. In our figures, the arcs of Euclidean graphs
show the associated parameters of the motion.

Euclidean graphs capture the structure of any mechanism consisting of joints and rigid links, a type of
mechanism called a kinematic chain. The links of the mechanism are the nodes of the graph, and the joints
are the arcs. Figure 1 shows a Euclidean graph depicting an example of a common robotic mechanism,
an “open” kinematic chain. It is called “open” because its graph has no closed paths. From a kinematic
viewpoint, what is of primary interest is the relationship between θ1, ..., θn, the joint parameters, and T0n,
the transformation from C0 to Cn, i.e. the relative location of the ends of the chain,

T0n = T1(θ1)T2(θ2)...Tn(θn) (6)
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Figure 1: An open kinematic chain with its Euclidean graph.

where Ti maps the parameters θi into its corresponding transformation. The velocity is

V0n = T−1
0n Ṫ0n = ad(T2...Tn)(T−1

1 Ṫ1) + ad(T3...Tn)(T−1
2 Ṫ2) + ...+ T−1

n Ṫn (7)

~v0n = γ1(V0n) = J

 θ̇1

· · ·
θ̇n

 (8)

where J is a 6xn matrix called the Jacobian, given by

J =
[
γ2(T2...Tn)γ1(T−1

1
dT1
dθ1

), γ2(T3...Tn)γ1(T−1
2

dT2
dθ2

), · · ·, γ1(T−1
n

dTn
dθn

)
]

(9)

The inverse of this kinematic chain, i.e. the transformation from Cn to C0, is related to the original chain
as

Tn0 = T−1
0n , Vn0 = −ad(T−1

0n )V0n, Jn0 = −γ2(T−1
0n )J0n (10)

(Note that this is different from “inverse kinematics”, which refers to solving Equation 6 for the joint
parameters.)

Figure 2 shows a “closed” kinematic chain, i.e. a kinematic chain whose graph has at least one closed
path. Each closed path adds a global constraint (as opposed to the local constraints represented by the
arcs) that composition of the transformations around the closed path yields the identity transformation.
For the example in Figure 2, this constraint is

I = T0(θ0)T1(θ1)...Tn(θn) (11)

Some mechanical systems which are not mechanisms consisting of links and joints can still be represented
as Euclidean graphs. We call such a system a virtual kinematic chain. We now discuss an example of a
virtual kinematic chain.
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Figure 2: A closed kinematic chain with its Euclidean graph.

2.3 Contact Kinematics

We now consider two arbitrarily-shaped, rigid objects which move while maintaining contact between
their surfaces. Assume that they contact at a single point. Then, their relative motion has five degrees
of freedom. (The one constraint imposed by contact is that their relative motion have no translational
component along their common surface normal.) We can view these five degrees of freedom as the sum of
the following pieces: two degrees of freedom for the position of the point of contact on one object’s surface,
two degrees of freedom for its position on the other object’s surface, and one degree of freedom of rotation
around the common surface normal. We now show how to express the relative motion of the two objects
as a composition of these three pieces and hence as a virtual kinematic chain.

Notation 1 For a function f(u, v), fu and fv denote the partial derivatives of f with respect to u and v
respectively.

Definition 1 A coordinate patch So for a surface S ⊂ <3 is an open, connected subset of S with the
following property: there exists an open subset U ⊂ <2 and a diffeomorphism f : U → So ⊂ <3 such that
the partial derivatives fu(~u) and fv(~u) are linearly independent for all ~u = (u, v) ∈ U . The pair (f, U) is
called a coordinate system for So. The coordinates of a point s ∈ So are (u, v) = f−1(s) (see Figure 3).

Definition 2 A coordinate system (f, U) is orthogonal if fu(~u) · fv(~u) = 0 for all ~u ∈ U . We call (f, U)
right-handed if fu(~u)× fv(~u) is outwardly normal to the surface for all ~u.

Definition 3 The Gauss frame (see Figure 4) for a right-handed orthogonal coordinate system (f, U) at
a point ~u ∈ U is the coordinate frame with origin at s = f(~u) and coordinate axes

~x(~u) = fu(~u)/‖fu(~u)‖, ~y(~u) = fv(~u)/‖fv(~u)‖, ~z(~u) = ~x(~u)× ~y(~u) (12)
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Figure 3: A coordinate system for a surface.

Figure 4: The Gauss frames for some points on the surface.
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Figure 5: The coordinate frames for contact kinematics and their Euclidean graph.

Example 1 Consider the set

U = {(u, v)| − π/2 < u < π/2,−π < v < π} (13)

and the map
f : U → <3 (u, v) 7→ (ρ cosu cos v,−ρ cosu sin v, ρ sinu) (14)

for some ρ > 0. Let So = f(U). The reader can verify that (f, U) is a right-handed orthogonal coordinate
system for So. Let S be the sphere of radius ρ. Then, So is a coordinate patch for S. The coordinates u
and v are known as the latitude and longitude respectively. The induced Gauss frame is

~x(~u) =

 − sinu cos v
sinu sin v

cosu

 ~y(~u) =

 − sin v
− cos v

0

 ~z(~u) =

 cosu cos v
− cosu sin v

sinu

 (15)

On the spherical surface of the earth, the x, y and z directions are called north, west and up respectively.

A Gauss frame associates a coordinate frame with a point on a surface. Therefore, it allows motion
along a surface to be viewed as “virtual” rigid-body motion, which is the key to the following formulation
of contact kinematics as a virtual kinematic chain.

Call the objects obj1 and obj2. Choose body frames Cb1 and Cb2 fixed relative to obj1 and obj2
respectively. Let S1 ⊂ <3 and S2 ⊂ <3 be the embeddings of the surfaces of obj1 and obj2 relative to
Cb1 and Cb2 respectively. Choose right-handed, orthogonal coordinate systems (f1, U1) and (f2, U2) for
coordinate patches S10 ⊂ S1 and S20 ⊂ S2 such that the points of contact stay within S10 and S20. The
coordinates of the point of contact on obj1 and obj2 are ~u1(t) and ~u2(t). Define the contact frames Cc1
and Cc2 to be the Gauss frames at ~u1(t) and ~u2(t) respectively (see Figure 5). Note that the z axis of Cc1
must always be the negative z axis of Cc2 because at the point of contact the outward normal to obj1 is
the inward normal to obj2. Finally, define the contact angle ψ(t) as the angle between the x axes of Cc1
and Cc2 . We choose the sign of ψ so that a rotation of Cc1 through angle −ψ around its z axis alligns the
x axes.

The Euclidean graph for contact kinematics is shown in Figure 5. This is a virtual five-degree-of-
freedom kinematic chain. The first ”joint” has two degrees of freedom and is parametrized by ~u2; the

8



second ”joint” has one degree of freedom and is parametrized by ψ; the third ”joint” has two degrees of
freedom and is parametrized by ~u1. The transformation T2 ∈ SE(3) which characterizes the first ”joint” is

T2 =

[
~x2(~u2(t)) ~y2(~u2(t)) ~z2(~u2(t)) f2(~u2(t))

0 0 0 1

]
(16)

where ~x2(~u2), ~y2(~u2) and ~z2(~u2) are the coordinate vectors of Cc2 relative to Cb2 and are as given in
Equation 12. The transformation Tψ which characterizes the second ”joint” is

Tψ =


cosψ(t) − sinψ(t) 0 0
− sinψ(t) − cosψ(t) 0 0

0 0 −1 0
0 0 0 1

 (17)

The inverse T1 of the transformation which characterizes the third ”joint” is

T1 =

[
~x1(~u1(t)) ~y1(~u1(t)) ~z1(~u1(t)) f1(~u1(t))

0 0 0 1

]
(18)

where ~x1(~u1), ~y1(~u1) and ~z1(~u1) are the coordinate vectors of Cc1 relative to Cb1 and are as given in
Equation 12. Combining these transformations yields the following

Theorem 1 (Full Forward Kinematics) The transformation T from Cb2 to Cb1 can be written as

T = T2TψT
−1
1 (19)

To derive the instantaneous kinematics, we need the following definitions of geometric quantities

Definition 4 For a given orthogonal coordinate system (f, U), define the curvature K, the torsion Q, and
the scale matrix M as

K = [~x(~u), ~y(~u)]T [~zu(~u)/‖fu(~u)‖, ~zv(~u)/‖fv(~u)‖] (20)

Q = ~y(~u)T [~xu(~u)/‖fu(~u)‖, ~xv(~u)/‖fv(~u)‖] (21)

M = diag(‖fu(~u)‖, ‖fv(~u)‖) (22)

Intuitively, the curvature maps differential motions along the surface into the corresponding changes in
the surface normal. The torsion measures the ”twist” in the Gauss frame for a differential motion along
the surface. The scale matrix transforms differential changes in coordinates into differential distances along
the surface.

Example 2 Consider the coordinate system (f, U) from Example 1. The curvature, torsion form and
scale form are

K =

[
1
ρ 0
0 1

ρ

]
Q =

[
0 − tanu

ρ

]
M =

[
ρ 0
0 ρ cosu

]
(23)

To formulate the instantaneous kinematics, we also need these definitions. The velocity V of the
kinematic chain T is as defined in Section 2.1

V = T−1Ṫ , ~v = γ1(V ) (24)
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We also define the contact velocity Ṽ as

Ṽ = ad(T1)V, ~̃v = [vx, vy, vz, ωx, ωy, ωz]T = γ1(Ṽ ) (25)

The contact velocity is the velocity of the chain expressed relative to the frame Cc1 . This is a natural frame
relative to which to express the velocity: pure sliding corresponds to vz = ωx = ωy = ωz = 0, pure rolling
contact corresponds to vx = vy = vz = ωz = 0, and pure twist corresponds to vx = vy = vz = ωx = ωy = 0.

Let ~φ =

 ~u1

~u2

ψ

 be the vector of contact parameters. Let K1, Q1 and M1 be the curvature, torsion

form, and scale form for the coordinate system (f1, U1) at ~u1(t). Define K2, Q2 and M2 analogously.
Finally, let

Rψ =

[
cosψ − sinψ
− sinψ − cosψ

]
R0 =

[
0 1
−1 0

]
(26)

Theorem 2 (Instantaneous Forward Kinematics)

~̃v = J̃ ~̇φ (27)

where the matrix J̃ is given by

J̃ =


−M1 RψM2 0

0 0 0
R0K1M1 R0RψK2M2 0
−Q1M1 −Q2M2 1

 (28)

Theorem 2 is proven in [15]. Furthermore, in [15], the matrix J̃ is inverted, and hence the inverse
kinematics are derived (and referred to as the contact equations).

Corrolary to Theorem 2 ~v = J ~̇φ, where J is the Jacobian and is given by

J = γ2(T−1
1 )J̃ (29)

3 Multi-fingered Manipulation

We now investigate the problem of manipulating a rigid object with multiple fingers, each of which is a
multi-jointed kinematic chain. We will assume that the contact between the object and each finger occurs
at a single point in the final link (which we henceforth call the fingertip) of the finger. Manipulation
consists of changing the state of the system in some “controlled” manner.

Section 3.1 formulates a general description of the kinematics as a large closed, virtual kinematic chain.
Section 3.2 examines the configuration space and the “generalized joint limits” which constrain the space.
Sections 3.3 and 3.4 discuss two ways to move through configuration space. Section 3.3 describes a general
approach to velocity control, in particular how to indirectly control the contact degrees of freedom, which
are not actuated. Section 3.4 discusses “hyperspace jumps”, which are another method for moving through
configuration space. Section 3.5 describes how to use kinematics-based velocity control and hyperspace
jumps to perform the task of twirling a baton.
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Figure 6: The Euclidean graph for multi-fingered manipulation (note that each arc of this graph can be
expanded into a subgraph of the form shown in either Figure 1 or Figure 5).

3.1 Kinematics of the Fingers-Plus-Object System

Define the following coordinate frames. Cbp is the body frame of the palm of the hand. Cbo is the body
frame of the object. Cbf1 , ..., Cbfm are the body frames for each of the m fingertips. Ccf1 , ..., Ccfm are the
contact frames for the fingertips. Cco1 , ..., Ccom are the contact frames for the object at each of the m
points of contact.

We can represent the full kinematics of the system (fingers plus object) as the closed Euclidean graph
in Figure 6. Each arc of this graph actually represents an open kinematic subchain. The arc from Cbfi to
Cbp represents the kinematic chain of finger i. Because each finger is a multi-jointed mechanism, it has the
form shown in Figure 1. We call the vector of its internal joint parameters ~θi. The arc from Cfi to Cbo
represents the virtual kinematic chain for the contact kinematics of the object and finger i. This chain’s

graph has the form shown in Figure 5. We call the vector of its internal joint parameters ~φi =

 ~ufi
~uoi
ψi

 As

an example, Figure 7 shows all the coordinate frames and the full Euclidean graph for a planar manipulator
consisting of two finger each with two joints and flat fingertips. The y directions for all coordinate frames
in this example point into the page.

We can think of each of the m paths from Cbp to Cbo as being an “extended” finger whose “joints”
are the physical joints of the finger plus the contact degrees of freedom. Each extended finger has ni + 5
degrees of freedom, where ni is the number of physical joints of finger i. The kinematics of an exteded

finger are as follows. The state vector is

[
~θi
~φi

]
. The transformation for a given state is

Tei(

[
~θi
~φi

]
) = Tfi(~θi)Tci(~φi) (30)

where Tfi and Tci are the transformations for the finger and contact subchains respectively. The velocity
is given by

~vei = γ2(Tci)Jfi ~̇θi + Jci
~̇φi (31)

where Jfi and Jci are the Jacobians of the subchains. Hence, the Jacobian for the extended finger is

Jei = [γ2(Tci)Jfi , Jci ] (32)
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Figure 7: The coordinate frames and full Euclidean graph for a “planar manipulator” grasping a spherical
object.

When working with velocities, it is usually more convenient to change basis and use the contact velocity
~̃vci rather than ~̇φi because the physical constraints (see Section 3.3.2) are usually most naturally expressed
using this basis. With respect to this basis, the velocity is

~vei = γ2(Tci)Jfi ~̇θi + γ2(T−1
cio )~̃vci (33)

where Tcio is the transformation from the frame Cbo to the frame Ccoi . The Jacobian relative to this basis
is

J̃ei = [γ2(Tci)Jfi , γ2(T−1
cio )] (34)

The problem with the contact velocity is that it in not the derivative of any state vector. Hence, to
determine the system’s evolution in configuration space, we must transform from ~̃vci to ~̇θi.

The constraints due to the closure of the graph of the full system are succinctly expressed in terms of
the extended fingers in the following theorem

Theorem 3 (Fundamental Theorem)

Te1 = Te2 = · · · = Tem (35)

The instantaneous version of these constraints can be written
Corrolary to Theorem 3

Je1

 ~̇θ1

~̇φ1

 = Je2

 ~̇θ2

~̇φ2

 = · · · = Jem

 ~̇θm
~̇φm

 (36)
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or relative to the contact velocity basis

J̃e1

[
~̇θ1

~̃vc1

]
= J̃e2

[
~̇θ2

~̃vc2

]
= · · · = J̃em

[
~̇θm
~̃vcm

]
(37)

3.2 Configuration Space

The configuration space of the fingers-plus-object system is the set of all legal combinations of finger joint
angles and contact states. Theorem 3 places constraints on which combinations of joint angles and contact
states are considered legal; any combination which does not satisfy the closure constraint of Equation 35
is not legal. There are a variety of potential additional constraints on which combinations of joint angles
and contact states are legal which arise due to physical constraints on the system. We call these additional
constraints “generalized joint limits” (following [16]) because they are analogous to the joint limits of an
open-chain manipulator.

There are at least four sources of generalized joint limits: (i) the joint limits on the individual joints
of the fingers, (ii) the limits on the locations of the contact points on the fingers, (iii) the limits on the
locations of the contact points on the object, and (iv) the solidity of fingers and objects. We now discuss
each of these.

Joint limits are constraints on the state of individual physical joints. For example, a revolute joint
might be constrained to have angle between 90o and 270o, or a linear joint might be constrained to have
position between 0 inches and 24 inches. A joint limit affects the configuration space by placing a range
on the possible values of a particular entry of some ~θi.

In addition to limits on the physical joints, there are also limits on the “virtual joints” associated
with contact. One set of virtual joint limits is the limits on the positions of the contact points on the
fingertips. The primary constraint on the contact points is that they remain on the fingertips, i.e. on
the outermost links of the fingers. Otherwise, degrees of freedom are lost. There can also be spots on the
fingertips which are undersirable locations for contact points. For example, on human fingertips, fingernails
are a particularly bad place for a contact point to be because of their hardness, slipperiness, and lack of
high-resolution tactile sensing.

Another set of virtual joint limits is the limits on the positions of the contact points on the object. In
order to use the control schemes of Sections 3.3 and 3.4, the object needs to be fully constrained by the
contact. Whether the object is fully constrained depends on the positions of the contact points on the
object as well as the type of contact and characteristics of the contact (e.g., coefficient of friction). When
there are frictional contacts, the condition that the object be fully constrained by the contact is called
“frictional form closure” [4].

The solidity of the fingers and object imposes yet another constraint on possible configurations. Any
configuration of the fingers-plus-object system which would have two fingers or a finger and an object
occupying the same space is forbidden.

3.3 Kinematics-Based Velocity Control

In this section we discuss one way to move through configuration space: kinematics-based velocity control.
By velocity control, we mean that all fingertips remain in contact with the object and that the system
state changes continuously as a function of time. By kinematics-based, we mean that there are sufficient
constraints on the contact states that the unactuated contact degrees of freedom (and hence the velocity
of the object through space) are fully determined by the finger joint velocities; therefore, we can control
the full system by controlling the finger joints.
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We discuss the two types of constraints on the contact velocities, closure constraints and physical
constraints, in Sections 3.3.1 and 3.3.2 respectively. The closure constraints are those which arise from the
constraint that the full system be a closed kinematic chain (as discussed in Section 3.1), while the physical
constraints result from the physics of contact. Note that for each point of contact there must be a total
of six independent constraints: five to fully determine the evolution of the contact state and one to ensure
that contact is maintained. (As we discuss in Section 3.4, it is certainly possible for contact points to be
lost.)

Section 3.3.3 discusses two different goals for velocity-based manipulation and how to achieve them.
The first goal is to control the velocity of the object through space (or, more precisely, relative to the
reference frame of the hand). The second goal is to control the motion of the contact points across the
object’s surface. Unless the fingers have a full six degrees of freedom, these goals are mutually exclusive.

3.3.1 Closure Constraints

The closure constraints are given by Equation 37. After some algebraic manipulation, we can rewrite these
constraints as a single equation which explicitly shows the dependence of the contact degrees of freedom
on the finger joints

J̃c~̃vc = Jf ~̇θ (38)

where

~̃vc =

 ~̃vc1
· · ·
~̃vcm

 , J̃c =


γ2(T−1

c1oT
−1
c2 ) −γ2(Tc2oT

−1
c2 ) 0 · · · 0

γ2(T−1
c1oT

−1
c3 ) 0 −γ2(Tc3oT

−1
c3 ) 0

· · · · · · 0 · · · 0
γ2(T−1

c1oT
−1
cm ) 0 0 · · · −γ2(TcmoT−1

cm )

 (39)

~̇θ =


~̇θ1

· · ·
~̇θm

 , Jf =


−γ2(T−1

f1
Tf2)Jf1 Jf2 0 · · · 0

−γ2(T−1
f1
Tf3)Jf1 0 Jf3 0

· · · · · · 0 · · · 0
−γ2(T−1

f1
Tfm)Jf1 0 0 · · · Jfm

 (40)

Note that the (i − 1)st row of Equation 38 expresses the constraint that the velocities of the chains
Cbf1 → Cbp → Cbfi and Cbf1 → Cbo → Cbfi are equal.

As long as J̃c has full rank, we can think of Equation 38 as 6(m − 1) constraints on the contact

velocities ~̃vc selectable by our choice of the joint velocities ~̇θ. In the special case when rank(J̃c) < 6(m−1),

Equation 38 provides rank(J̃c) constraints on ~̃vc and 6(m− 1)− rank(J̃c) constraints on ~̇θ.

Example 3 For the configuration of the planar manipulator shown in Figure 8,

Jf =



−4 −7 0 3
0 0 0 0

−3
√

3 0 −3
√

3 0
0 0 0 0
1 1 1 1
0 0 0 0


, ~̇θ =


θ̇11

θ̇12

θ̇21

θ̇22

 (41)
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Cbp

Cbo
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6

Cbf1
Cbf2

0.5

3 2

2

60o

Figure 8: A grasp configuration of the planar manipulator.

J̃c =



1 0 0 0 −4 0 1 0 0 0 0 0
0 1 0 4 0 −0.5 0 −1 0 0 0 −0.5
0 0 1 0 0.5 0 0 0 1 0 −0.5 0
0 0 0 1 0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0 0 0 −1 0
0 0 0 0 0 1 0 0 0 0 0 1


(42)

3.3.2 Physical Constraints

The closure constraints provide at most 6(m− 1) constraints on the 6m degrees of freedom of the contact
velocities. Hence, the contact velocities always require additional constraints to be fully determined.
These additional constraints are the “physical constraints”, which arise from the physics of the system.
Often, these constraints can be expressed in purely kinematic terms (i.e., without reference to the system
dynamics), and if there are sufficient kinematic physical constraints (in general, six or more), then the
contact velocities are kinematically determined.

Some examples of purely kinematic physical constraints are the following. Point contact with friction
produces two kinematic physical constraints, ṽcix = 0 and ṽciy = 0, where the contact velocity has com-
ponents given by ~̃vci = [ṽcix , ṽciy , ṽciz , ω̃cix , ω̃ciy , ω̃ciz ]

T . Soft fingertip contact has three kinematic physical
constraints, ṽcix = 0, ṽciy = 0, and ω̃ciz = 0. Rigid conforming contact produces five kinematic physical
constraints, ṽcix = 0, ṽciy = 0, ω̃cix = 0, ω̃ciy = 0 and ω̃ciz = 0. Adhesive contact has six kinematic
constraints, ~̃vci = 0.

Rigid conforming contact and adhesive contact require special-purpose grippers. The electrorheological
fingertips developed by Kenaley and Cutkosky [10] can create rigid conforming contact. Fingertips with
suction cups, glue, or velcro can produce adhesive contact. Standard fingertips usually produce one of:
(i) point contact with friction, (ii) soft fingertip contact, or (iii) free contact (i.e., no kinematic physical
constraints). Which one is produced depends on the type of translational and rotational friction at the
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contact. For kinetic translational and kinetic rotational friction, there is free contact; for static translational
and kinetic rotational, there is point contact with friction; for static translational and kinetic rotational,
there is soft fingertip contact. With human-like fingertips it is possible to select the contact type for each
fingertip by appropriate choice of the internal grasping forces.

Observe that the kinematic physical constraints of all the types of contact discussed above are linear.
Hence, for these cases, all the kinematic physical constraints on finger i can be expressed as

Q̃i~̃vci = 0 (43)

where Q̃i is a matrix with as many rows as there are kinematic physical constraints. The full set of physical
constraints on the system is given by

Q̃~̃vc = diag(Q̃1, . . . , Q̃m)~̃vc = 0 (44)

We can express the closure constraints and kinematic physical constraints jointly as[
J̃c
Q̃

]
~̃vc =

[
Jf
0

]
~̇θ (45)

If rank(

[
J̃c
Q̃

]
) = 6m, then the contact velocities are kinematically determined; if rank(

[
J̃c
Q̃

]
) < 6m,

then the contact velocities are kinematically underdetermined.
Let {~̃vci1 , . . . , ~̃vcik} be a basis for the space of all possible contact velocities at contact point i which

satisfy Equation 43. Then, we call ~̃vci1 , . . . , ~̃vcik “instantaneous virtual joints” because they span the space
of physically possible instantaneous motions which maintain contact. We define the “reduced Jacobian”
J̃ri such that the velocity ~vci of the virtual kinematic chain of contact point i is

~vci = J̃ri~̃vcri (46)

where ~̃vcri is the representation of the contact velocity relative to the instantaneous virtual joints. When the
contact velocities are kinematically determined, we say that the instantaneous virtual joints are “passively
actuated” because for any desired finger joint velocities and contact velocities which together satisfy all the
constraints, actuating the finger joints to achieve the desired joint velocities forces the contact velocities
to be as desired. (This is a generalization of Kerr and Roth’s [11] original observation that the contact
degrees of freedom are instantaneously equivalent to a spherical joint when there is point contact with
friction and Hunt and Torfason’s [8] insight about the indirect control of such a “virtual spherical joint.”)

When the contact velocities are kinematically underdetermined, we must consider the dynamics of
the system to determine which of the kinematically possible values the contact velocities will assume.
Hence, the dynamics can be thought of as additional constraints which fully determine a system which
is deterministic and kinematically underdetermined. A discussion of dynamics is beyond the scope of
this paper, and the interested reader is referred to [17]. The fact that the contact velocities are partially
constrained will in some cases allow a simplification of the dynamics.

Example 4 Consider the planar manipulator in Figure 8 with soft fingertip contact at both contact points.
Then,

Q̃ =



1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1


(47)
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Hence, rank(

[
J̃c
Q̃

]
) = 12, and the contact degrees of freedom are fully constrained. For contact point

1, the virtual instantaneous joints, ~̃vc11 and ~̃vc12 , the representation relative to the virtual instantaneous
joints, ~̃vcr1 , and the reduced Jacobian, J̃r1 are

~̃vc11 =



0
0
0
1
0
0


, ~̃vc12 =



0
0
0
0
1
0


, ~̃vcr1 =

[
ω̃c1x
ω̃c1y

]
, J̃r1 =



0 0.5
−2 0
0 −2
0 0
0 1
−1 0


(48)

3.3.3 Manipulation Paradigms

In the previous two sections, we discussed how to control the contact velocities. In this section, we examine
a few types of manipulation we can perform based on this capability.

One type of manipulation is to control the velocity of the object relative to the palm with kinematically
determined contact velocities. (This is the type of manipulation discussed in [18], [11] and [8].) To obtain
a desired velocity ~v for the object, we need the velocity for each extended finger to be ~v, i.e.

~v = Jei

 ~̇θi
~̇φi

 (49)

for all i. With the closure constraints as expressed in Equation 37, it is clear that the velocities will satisfy
these constraints. To find the desired values for the joint and virtual joint velocities, we first express
Equation 49 in its reduced form to ensure compliance with the physical constraints

~v =
[
γ2(Tci)Jfi J̃ri

] [ ~̇θi
~̃vcri

]
= J̃eri

[
~̇θi
~̃vcri

]
(50)

When rank(J̃eri) = 6 for all i, we can for any ~v find values of ~̇θi and ~̃vcri for all i which satisfy Equation 50;
therefore, we can move the object with arbitrary velocity relative to the palm. (Note that human fingers
all have four degrees of freedom and hence will generally have rank(J̃eri) = 6 for any of the three standard
contact types.) When rank(J̃eri) < 6 for any i, the set of possible velocities of the object is restricted to

have dimension < 6. When dim(

[
~̇θi
~̃vri

]
) > rank(J̃eri), there are not unique values for ~̇θi and ~̃vcri but

rather an infinite set of possible values.
A second type of manipulation is to control the contact velocities and hence the velocities of the points

of contact across the surfaces of the object and fingertips [15]. An example of this type of manipulation
is grasp adjustment. To achieve particular contact velocities ~̃vc which satisfy the physical constraints,
we use Equation 38 to solve for the desired joint velocities ~̃vf . If the contact velocities are kinematically
determined, they automatically assume the values ~̃vc. (This is a generalization of Montana’s result for two
fingers [15].) If the contact velocities are kinematically underdetermined, one must additionally control the
dynamics. (Cole, Hsu and Sastry [5] discuss one method for this.) If rank(Jf ) = 6(m−1), then any contact
velocities are achievable. If rank(Jf ) < 6(m − 1), then a restricted set of contact velocities is achievable.
If dim(~vf ) > rank(Jf ), then there are redundant degrees of freedom which can be chosen as desired.
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3.4 Hyperspace Jumps

While pure kinematics-based velocity control is often sufficient for moving the object small distances (or
angles), large motions often require additional control strategies. This is because, in general, moving
the object with a constant velocity will eventually cause a generalized joint limit to be reached. In this
section, we describe a different control strategy, the hyperspace jump, which when used in conjunction
with kinematics-based velocity control allows execution of large motions while avoiding generalized joint
limits.

A hyperspace jump is when one or more of the fingertips break contact and re-engage in a different state.
(We call such a maneuver a “hyperspace jump” because it is a jump from one point in space to another
obtained by going through a higher-dimensional embedding space.) While these fingertips lose contact,
the other fingertips maintain their grasp on the object. Although the fingers that remain in contact may
continue to move the object, the true objective of a hyperspace jump is to change the extended state, i.e.
joint angles and contact states, of the fingers which break contact. With proper planning, a combination
of kinematics-based velocity control and hyperspace jumps will produce the desired motion of the object
while avoiding generalized joint limits. Section 3.5 shows an example of how this works.

Hyperspace jumps are actually very similar to the particular type of kinematics-based velocity control
which occurs when a subset of the fingers are grasping the object and the others are moving with free
contact, i.e. with no physical constraints. However, there are two differences between free contact and no
contact. First and foremost, fingers moving with free contact are still confined to meet the generalized
joint limits, while fingers moving with no contact can pass over generalized joint limits to topologically
disconnected portions of configuration space. Second, moving with free contact still induces dynamic
interactions between the fingertip and object, while moving with no contact does not.

3.5 An Example: Twirling a Baton

We now present an example of how kinematics-based velocity control and hyperspace jumps can be used to
plan a trajectory through the configuration space. The task is twirling a baton, a task which was originally
discussed and implemented by Fearing [6]. The object in this task is a cylinder with radius ro and height
h. The goal of the task is to manipulate the object so that it rotates around an axis through its center
and perpendicular to its length for an arbitrarily large number of rotations in a single direction.

The hand uses three fingers. We choose the geometry and kinematics of the fingers to make the
mathematics involved as simple as possible and hence not to lose the central ideas in the mathematical
details. The fingertips of these fingers are identically shaped and, over their legal areas of contact, are
shaped like cylinders with radius rf , where rf < h/π. (As we will see, the contact points move on the
object, and this bound on the size of the fingertips is required to provide sufficient room to move.) The
fingers are three-degree-of-freedom Cartesian manipulators and hence can move the fingertip with any
translational velocity (respecting generalized joint limits and joint velocity limits) but with no rotational
velocity. The contact is soft contact with friction when there are two fingers contacting the object (thus
allowing the fingers to constrain the object during a hyperspace jump) and point contact with friction
when there are three fingers contacting the object (thus giving the extended fingers six degrees of freedom
during velocity control phases). (A possible physical explanation of this in contact type is that the force
exerted by the fingers is greater when there are two fingers contacting than when there are three fingers
contacting.)

To perform the task, the hand is positioned so that the axes of the fingertips are oriented parallel to
the axis of rotation. As we will see, for the entire task the contact points remain in the plane perpendicular
to this axis through the center of the object. Therefore, we can illustrate the motion of the fingertips,
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Figure 9: Alternating between kinematics-based velocity control and hyperspace jumps, the system cycles
through this sequence of configurations.

19



object, and contact points with two-dimensional slices through this plane. This is exactly what we do
in Figure 9, which illustrates the sequence of system configurations as the fingers use a combination of
velocity control and hyperspace jumps to rotate the object half a turn and end up back in the same
basic configuration as where they started. We now discuss the motions depicted in Figure 9 in detail,
paying special attention to the transition from configuration a to configuration b and the transition from
configuration b to configuration c because the other transitions are similar to these.

Transition from configuration a to configuration b: Configuration a shows the initial grasp
configuration. From this initial configuration, we perform kinematics-based velocity control to rotate the
object through an angle of −π/3 around its center, after which the system ends up in configuration b.
The key question then is how to choose the joint velocities so as to achieve the desired object motion. In
Section 3.3.3, we saw that Equation 50 allowed us to calculate these joint velocities. However, the problem
is that the Jacobian terms in this equation change as a function of time. Because J̃ri and γ2(Tci) are
functions of the position of the contact points, we need to compute these positions (or, in an actual hand
with tactile-sensing fingertips, sense these positions) as a function of time. Because of the way we have
chosen the geometry and kinematics for this example, the velocities of the contact points are constant
throughout the trajectory. Hence, we can compute them first and then use them to compute the joint
velocities as a function of time.

Computation of the induced contact point velocities: In order to apply Equation 27 of Theo-
rem 2, we first need to choose coordinate patches for the surfaces of the object and the fingertips. Since
they are all cylinders, we can use for all of them the following coordinate system for a cylinder of radius r
and height h:

U = {(u, v)| − h/2 < u < h/2,−πr < v < πr}, f(u, v) = (r cos(v/r), r sin(v/r), u) (51)

Then, the curvature, torsion and scale matrix are:

K = diag(0, 1/r), Q = 0, M = I (52)

Assume that in configuration a the contact points are placed so that for contact point i the positions ~ufi
and ~uoi on the finger and object respectively are:

~uf1 = (0,−πrf/6), ~uo1 = (−πrf/6, roπ) (53)

~uf2 = (0,−πrf/2), ~uo2 = (πrf/2, 0) (54)

~uf3 = (0, πrf/6), ~uo3 = (−πrf/6, 0) (55)

Further assume that the directions of increasing x component of ~u are out of the page and to the right for
the fingers and the object respectively. (The direction of increasing y component can be inferred by knowing
that the z direction is outwardly normal and the induced Gauss coordinate frame must be right-handed.)
Then, the values of the angle ψi at the three contact points are

ψ1 = −π/2, ψ2 = ψ3 = π/2 (56)

and the contact velocities ~̃vi at the three points are

~̃v1 = (0, 0, 0, 0,−ω0, 0)T , ~̃v2 = ~̃v3 = (0, 0, 0, 0, ω0, 0)T (57)
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where ω0 is the magnitude of the angular velocity of the object. According to Equation 28,

J̃1 =



−1 0 0 1 0
0 −1 1 0 0
0 0 0 0 0
0 1/ro 0 0 0
0 0 0 −1/rf 0
0 0 0 0 1


, J̃2 = J̃3 =



−1 0 0 −1 0
0 −1 −1 0 0
0 0 0 0 0
0 1/ro 0 0 0
0 0 0 1/rf 0
0 0 0 0 1


(58)

Applying Equation 27 and solving for the ~̇φi gives

~̇φ1 =

 ~̇uo1

~̇uf1

ψ̇1

 =


rfωo

0
0

rfωo
0

 , ~̇φ2 =

 ~̇uo2

~̇uf2

ψ̇2

 = ~̇φ3 =

 ~̇uo3

~̇uf3

ψ̇3

 =


−rfωo

0
0

rfωo
0

 (59)

Assuming that ω0, the angular velocity of the object, is constant, then for 0 ≤ t ≤ π/(3ω0) the contact
points are at

~uf1 = (0,−πrf/6 + trfω0), ~uo1 = (−πrf/6 + trfω0, roπ) (60)

~uf2 = (0,−πrf/2 + trfω0), ~uo2 = (πrf/2− trfω0, 0) (61)

~uf3 = (0, πrf/6 + trfω0), ~uo3 = (−πrf/6− trfω0, 0) (62)

Computation of the joint velocities: Assume that Cbp, the base coordinate frame of the hand, is
oriented so that ~x is right, ~y is out of the paper, and ~z is down. Also assume that the joint 1 of each finger
is a linear joint oriented in the x direction relative to this base coordinate frame, joint 2 is a linear joint
oriented in the y direction, and joint 3 is a linear joint oriented in the z direction. Then, knowing the
positions of the contact points, we can compute the terms J̃eri in Equation 50

J̃er1 =



cos(ω0t) 0 sin(ω0t) 0 −ro 0
0 1 0 ro 0 πrf/6− trfω0

− sin(ω0t) 0 cos(ω0t) 0 trfω0 − πrf/6 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


(63)

J̃er2 =



cos(ω0t) 0 sin(ω0t) 0 −ro 0
0 −1 0 ro 0 trfω0 − πrf/2

sin(ω0t) 0 − cos(ω0t) 0 πrf/2− trfω0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


(64)

J̃er3 =



cos(ω0t) 0 sin(ω0t) 0 −ro 0
0 −1 0 ro 0 trfω0 + πrf/6

sin(ω0t) 0 − cos(ω0t) 0 −πrf/6− trfω0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


(65)
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Using the contact velocites from Equation 57, we can substitute into Equation 50 and solve for the
joint velocities to get

~̇θ1 =

 θ̇1x

θ̇1y

θ̇1z

 =

 −roω0 cos(ω0t) + ω0(πrf/6− trfω0) sin(ω0t)
0

−roω0 sin(ω0t)− ω0(πrf/6− trfω0) cos(ω0t)

 (66)

~̇θ2 =

 θ̇2x

θ̇2y

θ̇2z

 =

 roω0 cos(ω0t) + ω0(−πrf/2 + trfω0) sin(ω0t)
0

roω0 sin(ω0t)− ω0(−πrf/2 + trfω0) cos(ω0t)

 (67)

~̇θ3 =

 θ̇3x

θ̇3y

θ̇3z

 =

 roω0 cos(ω0t) + ω0(πrf/6 + trfω0) sin(ω0t)
0

roω0 sin(ω0t)− ω0(πrf/6 + trfω0) cos(ω0t)

 (68)

Transition from configuration b to configuration c: When the system reaches configuration b,
the contact points are at

~uf1 = (0, πrf/6), ~uo1 = (πrf/6, roπ) (69)

~uf2 = (0,−πrf/6), ~uo2 = (πrf/6, 0) (70)

~uf3 = (0, πrf/2), ~uo3 = (−πrf/2, 0) (71)

Continuing with kinematics-based velocity control will soon bring the contact points to a position where
there is no longer frictional form closure, i.e. where the generalized joint limits are violated. Therefore,
instead of continuing with velocity control, we stop and perform a hyperspace jump. Fingers 1 and 2
remain in contact with the object while finger 3 breaks contact and re-engages in a different configuration.
The new contact positions for contact point 3 are

~uf3 = (0,−πrf/2), ~uo3 = (−πrf/2, roπ) (72)

There are a variety of paths that finger 3 can travel in order to break contact, travel to the other side of
the object, and regain contact. However, whatever the path, the total translation of the fingertip relative
to Cbp, the base coordinate frame of the hand, is [−

√
3(ro + rf ), 0, ro + rf ]T .

Transition from configuration c to configuration d: This motion uses kinematics-based velocity
control. It is similar enough to the transition from a to b that we do not go through all the calculations
again but rather just give the resulting finger joint velocities for 0 ≤ t ≤ π/(3ω0) θ̇1x

θ̇1y

θ̇1z

 =

 −roω0 cos(ω0(t+ π/3)) + ω0(−πrf/6− trfω0) sin(ω0(t+ π/3))
0

−roω0 sin(ω0(t+ π/3))− ω0(−πrf/6− trfω0) cos(ω0(t+ π/3))

 (73)

 θ̇2x

θ̇2y

θ̇2z

 =

 roω0 cos(ω0(t+ π/3)) + ω0(−πrf/6 + trfω0) sin(ω0(t+ π/3))
0

roω0 sin(ω0(t+ π/3))− ω0(−πrf/6 + trfω0) cos(ω0(t+ π/3))

 (74)

 θ̇3x

θ̇3y

θ̇3z

 =

 −roω0 cos(ω0(t+ π/3)) + ω0(πrf/2− trfω0) sin(ω0(t+ π/3))
0

−roω0 sin(ω0(t+ π/3))− ω0(πrf/2− trfω0) cos(ω0(t+ π/3))

 (75)
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Transition from configuration d to configuration e: This hyperspace jump which takes fingertip
1 from one side of the object to the other is completely analogous to the transition from b to c. The contact
positions start at

~uf1 = (0, πrf/2), ~uo1 = (πrf/2, roπ) (76)

~uf2 = (0, πrf/6), ~uo2 = (−πrf/6, 0) (77)

~uf3 = (0,−πrf/6), ~uo3 = (−πrf/6, roπ) (78)

The new positions for contact point 1 are

~uf1 = (0,−πrf/2), ~uo1 = (πrf/2, 0) (79)

Transition from configuration e to configuration f: The finger joint velocities are θ̇1x

θ̇1y

θ̇1z

 =

 roω0 cos(ω0(t+ 2π/3)) + ω0(−πrf/2 + trfω0) sin(ω0(t+ 2π/3))
0

roω0 sin(ω0(t+ 2π/3))− ω0(−πrf/2 + trfω0) cos(ω0(t+ 2π/3))

 (80)

 θ̇2x

θ̇2y

θ̇2z

 =

 roω0 cos(ω0(t+ 2π/3)) + ω0(πrf/6 + trfω0) sin(ω0(t+ 2π/3))
0

roω0 sin(ω0(t+ 2π/3))− ω0(πrf/6 + trfω0) cos(ω0(t+ 2π/3))

 (81)

 θ̇3x

θ̇3y

θ̇3z

 =

 −roω0 cos(ω0(t+ 2π/3)) + ω0(πrf/6− trfω0) sin(ω0(t+ 2π/3))
0

−roω0 sin(ω0(t+ 2π/3))− ω0(πrf/6− trfω0) cos(ω0(t+ 2π/3))

 (82)

Transition from configuration f to configuration a: This hyperspace jump takes fingertip 2 from
one side of the object to the other, thus completing a half-turn of the object and leaving the fingers in a
position to continue repeating this procedure indefinitely. The contact positions start at

~uf1 = (0,−πrf/6), ~uo1 = (πrf/6, 0) (83)

~uf2 = (0, πrf/2), ~uo2 = (−πrf/2, 0) (84)

~uf3 = (0, πrf/6), ~uo3 = (πrf/6, roπ) (85)

The new positions for contact point 2 are

~uf2 = (0,−πrf/2), ~uo2 = (−πrf/2, roπ) (86)

Note that the contact positions on the object are not the same as the original ones. This is because the
object has only completed half a turn. After a second half-turn these positions are back where they started.

4 Conclusion

We have derived a full configuration-space description of the kinematics of multi-fingered manipulation.
We have done this by first formulating the contact kinematics as a virtual kinematic chain. Then, we could
view the fingers-plus-object system as a large closed virtual kinematic chain. The configuration space of
the system, i.e. the set of legal states of the closed kinematic chain, has boundaries determined by a set of
constraints called the “generalized joint limits”.
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We have described two ways to move through the system’s configuration space, both of which rely
on kinematics-based control, i.e. control under which the system configuration is fully determined by the
finger joint angles. (While dynamics-based control fits into our kinematic model, it is beyond the scope
of this paper.) The first is kinematics-based velocity control, where all fingertips maintain contact. The
key to this type of control is using the combination of kinematic closure constraints and physical contact
constraints to indirectly control the unactuated contact degrees of freedom. The second is hyperspace
jumps, where some of the fingertips break contact and regain contact in a different configuration while the
other fingertips maintain a grasp on the object. The combination of kinematics-based velocity control and
hyperspace jumps allows planning of large motions through configuration space which avoid generalized
joint limits, as demonstrated in an example showing how to perform the task of twirling a baton.
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