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Abstract

We distinguish between two types of grasp stability,
which we call spatial grasp stability and contact grasp
stability. The former is the tendency of the grasped
object to return to an equilibrium location in space;
the latter is the tendency of the points of contact
to return to an equilibrium position on the object’s
surface. We show via examples that spatial stability
cannot capture certain intuitive concepts of grasp sta-
bility and hence that any full understanding of grasp
stability must include contact stability. We derive a
model of how the positions of the points of contact
evolve in time on the surface of the grasped object in
the absence of any external force or active feedback.
From this model, we obtain a condition which deter-
mines whether or not a two-fingered grasp is contact
stable.

1 Introduction

Stability is the tendency of a system to return to an
equilibrium state when displaced from this state. Cur-
rently, there are two different views of what consti-
tutes the state of a grasp, leading to two different
concepts of grasp stability. The first views the state
as the position (and velocity) of the grasped object
relative to the palm of the hand. Hence, grasp stabil-
ity refers to the tendency of the object to return to its
original position when displaced by an outside force.
We call this spatial grasp stability. The second views
the state as the position (and velocity) of the points of
contact on the surfaces of the object and the fingers.
Hence, grasp stability is the tendency of the points
of contact to return to their original locations in re-
sponse to a disturbance. We call this contact grasp
stability.

Both of these types of grasp stability have been
investigated in the past. For spatial grasp stability,
Salisbury [15] defined a quantity called the grasp ma-
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trix and showed that if this matrix has sufficient rank
then the fingers can apply force and torque in arbi-
trary directions. (Under such conditions the grasp is
said to have the property of force closure.) The sys-
tem (whose state is the position and velocity of the
object) is hence locally controllable and can be stabi-
lized by an appropriate control law. (Nguyen [13] dis-
cusses a class of control laws which stabilize a grasp
in this sense.) Salisbury’s force-closure criterion only
categorizes a grasp as (spatially) stable or unstable
and does not distinguish among the huge number of
spatially stable grasps. For the purposes of grasp se-
lection, we do need to make such a distinction, and
there have been a few numerical criteria proposed for
spatial grasp stability, e.g. [6, 7, 8, 14].

For contact grasp stability, Hanafusa and Asada [5]
built a hand whose fingertips slid along the surface of
a grasped object in such a way as to minimize a me-
chanical potential energy. Hence, in response to any
small displacement of the contact points, the system
would return to its equilibrium position, and the grasp
would therefore be (contact) stable. (Nguyen [13] also
discusses the stability of sliding contact.) However,
such a hand is fundamentally different from human
hands in that its fingertips are designed to slide easily
across the object surface while human fingertips ex-
ert frictional forces. (Friction in fingertips is generally
a good thing because it allows spatially stable grasp-
ing with far fewer points of contact.) Cutkosky and
Wright [3] analyze contact grasp stability for human-
like fingertips and show how the viscoelastic nature
of human fingertips enhance this stability. However,
they do this analysis for only a few special cases.

In this paper, we extend the analysis of Cutksosky
and Wright to derive a general condition for contact
stability of a two-fingered grasp of an arbitrary three-
dimensional object. Through examples, we see how
this condition embodies many intuitive notions about
grasp stability, concepts that measures of spatial sta-
bility cannot capture.



(a) b<a => instability (b) c>a => stability

Figure 1: Object curvature effects grasp stability.

(a) flat fingertips =>stability  (b) pointed => instability

Figure 2: Finger curvature effects grasp stability.

2 Aspects of grasp stability

In this section, we examine examples which illustrate
certain important aspects of grasp stability and why
measures of spatial stability cannot capture them.

Example 1 Consider two ellipsoids, one given by the
equation z2/a® + y?/b* + z2/b* = 1 and the other
by the equation z%/a® + y?/c* + z2/c? = 1, where
b < a < ¢. Consider grasping these ellipsoids with flat
fingertips at the points (a,0,0) and (—a,0,0). (Fig-
ure 1 shows a cross-section of these grasps.) From
the point of view of spatial stability, these two grasps
are equivalent because the grasp matrices are identical
and the finger Jacobeans are identical. However, the
second grasp seems more stable. This example illus-
trates the importance of the curvature of the grasped
object to grasp stability.

Example 2 Consider two different grasps identical in
all respects except the shape of the finger surfaces. In
one case the fingers are flat, while in the other case
the fingers are pointed. (Figure 2 illustrates these two

413

T

(b) c>a => stability

T

(b) c<b => instability

Figure 3: Distance between contacts effects stability.

scenarios.) As in the last example, the grasp matri-
ces and finger Jacobeans are identical; therefore, these
grasps are equivalent from the point of view of spatial
stability. However, the first grasp seems more stable.
Hence, the curvature of the fingers effects grasp sta-
bility.

Example 3 Consider two ellipsoids, one given by the
equation z2/a® + y?/c? + 22/c* = 1 and the other
by the equation z%/b% + y2/c* + 2%/c* = 1, where
a < ¢ < b, and consider grasping these objects with
flat fingertips. Let the grasp points be (a,0,0) and
(—a,0,0) in the first case and (b,0,0) and (—5,0,0) in
the second case. (Figure 3 shows these two scenarios.)
Then, the curvatures of the objects at all the points
of contact are identical and equal to diag(1/¢,1/c).
The shapes of the finger surfaces are also the same in
the two cases. The first grasp seems more stable than
the second despite the objects and the fingers having
the same local geometry because the points of contact
are closer to each other in the first case than in the
second case.

Example 4 Consider two grasps which are identical
in all ways except the material properties of the fin-
gers. In the first case, the finger surface is either rigid
or purely elastic, while in the second case the finger
surface is viscoelastic, or in more common language
“soft” or “squishy”. The second case seems to pro-
vide a more stable grasp [1, 3].

We have thus identified four factors which seem in-
tuitively to be important in grasp stability: (1) ob-
ject shape, (2) finger shape, (3) distance between the



points of contact, and (4) finger and object viscoelas-
ticity. We will below derive a measure of grasp stabil-
ity which incorporates all of these factors. However,
we first review contact kinematics.

3 Contact kinematics

In the nomenclature of [11], contact kinematics refers
to the evolution of a point of contact on the surfaces of
two objects in response to a relative motion of these
objects. We now present in a simplified form some
concepts and equations from the study of contact kine-
matics relevant to our analysis of grasp stability.

Consider two rigid objects, obj; and obja, which
have a single point of contact.

Definition 1 A local reference frame for this point
of contact is a right-handed, orthonormal coordinate
frame whose origin is at the point of contact and
whose z axis is the outward normal to obj;, at this
point. (The z and y axes can be any unit vectors
satisfying the constraints of orthogonality and right-
handedness.)

Definition 2 The curvature of a surface S at a point
§ € S relative to two unit vectors £ and ¥, which are
orthogonal to each other and tangent to S at §, is
the 2x2 matrix K such that any infinitesimally small
displacement As = [As,, Asy, 0T of §along S results
in a change of 7, the outward normal to S, of

- - K| A%
An=7(s+ As)—7(5) = Asy (1)
0

The principle curvatures are the eigenvalues of the
curvature matrix. The principle curvatures are always
real because the curvature matrix is symmetric.

Let 51 = [512,415,0]7 and & = [$20, 525, 0]7 be
the rate at which the point of contact moves across
the surfaces of obj; and objs respectively. Let v =
[ve,vy,0,]7 and & = [wg,wy,w,]T be the transla-
tional and rotational velocities of 0bj1 relative to 0bj2,
where the reference frame for obj1 is the local refer-
ence frame. Let K; and K5 be the curvatures of objl
and 0bj2 at the point of contact relative to the z and
y axes of the local reference frame. Call the quantity
K, = K;1 + K> the relative curvature at the point of
contact. The contact constraint v, = 0 is a neces-
sary and sufficient condition that the objects remain
in contact. We can then derive the contact equations
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For two different derivations of these equations, see
[11] and [2].

4 A model of grasp dynamics

We now build a model of how the system (defined as
the positions and velocities of the points of contact
on the object surface) evolves in response to small
disturbances from equilibrium.

4.1 Assumptions

The model utilizes the following underlying assump-
tions:

(1) There are exactly two points of contact (actu-
ally areas of contact due to the viscoelasticity of the
fingertip), one for each of two fingers grasping the ob-
ject.

(2) The fingertips maintain their grasp of the ob-
ject. Hence, because frictional forces prevent slippage,
the object can roll but not slip at the points of contact.
(In the notation of Section 3, vz = vy =w, =0.)

(3) The evolution of the points of contact follow
Equations 2-3 despite the fact that we are allowing
the fingertips to be “soft”, i.e. viscoelastic. The ex-
perimental results reported in [10, 12] indicate that
this is reasonable when Assumption 2 holds.

(4) Disturbances from equilibrium are small enough
that all first-order approximations are valid.

(5) The force and magnitude exerted by a fingertip
is of constant magnitude and direction relative to its
local reference frame. Therefore, as the fingertip ro-
tates relative to the object, the direction of the applied
force rotates likewise. Note that tactile sensing can
tell us the position of the point of contact; hence, we
could make the applied force a function of this tactile
feedback in order to stabilize the system. However,
for the purposes of this paper, we are interested in
the natural stability of the system, i.e. the stability
in the absence of any feedback response.

4.2 The Generated Torques

As the points of contact move across the object sur-
face, there are three different types of torque gener-
ated: attractive, repulsive and dissipative. We de-
scribe the origin of each of these and derive its value.

Attractive torque: An attractive torque arises
from the change in position at which a finger applies
force. If the point of contact moves a small amount



As = [Asz, Asy]T along the object’s surface, then the
vector from the object’s center of mass to the point
of contact changes by Ar = [Asg, Asy, 0]T (measured
relative to the object’s contact frame). This produces
an additional torque around the center of mass of

. . Asg Fy
=Arx F=1| Asy | x| Fy 4)
0 F,

where F is the force exerted by the finger on the ob-
ject. Using Equation 2, we can rewrite this as

K:‘[_My] “ Fe

Ab, F,
F.(JTK ) [ Al }

F4
Taz

(5)

Ta =

(6)

where K, is the relative curvature at the point of con-
tact, Af = [Af,, Aby,0]7 is the angular displacement
(of the object relative to the finger) from equilibrium,
J = [ -E)l (1) ], and 74, is a quantity about whose
value we do not care because we have assumed that
friction will compensate for this torque.

Note that (1) K, always has positive, real eigenval—
ues due to physical constraints and hence so does K~
(2) JTK!J has the same eigenvalues as K, and
(3) F, is always negative due to physical constraints.
So, F;(JT K7 'J) has negative, real eigenvalues, and
it therefore always acts to oppose displacement from
equilibrium in each of its principle directions. Hence,
the torque is attractive.

Repulsive torque: The repulsive torque arises
from a change in the direction of the applied force.
With the assumption that the force is always applied
in the same direction relative to the ﬁngertip, the
change in the direction of the applied force is, —-AH
therefore, the change in the force is AF=-A0xF.
This produces an additional torque of

L. Te Ab, Fy
= ix(—AOxF)= | vy |x(—| Aby | x| Fy |)
r, 0 F, |
—r, F, =1y Fy ryFe Aby T
= ry Fy —r,F, —r . Fy Aby
Trz

®)

where 7,, is a quantity about which we do not care.
Note that the eigenval-
—r, F, —ryFy ryFe ]

ues of the matrix [ roF, —r,F, — 1 Fy
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are —r, F, and —(rpFp + ry Fy + 1. F) = -7~ F. For
most grasps, these eigenvalues are positive, and hence
the torque is repulsive. However, there do exist situ-
ations for which one or both of these eigenvalues are
negative, and hence the torque is partially or fully
attractive thus belying its name.

Dissipative torque: The dissipative torque arises
from the viscoelasticity of the fingers. This vis-
coelasticity produces a resistance to rolling, i.e. a
torque around the point of contact which opposes
the relative rotation of the two objects. Cutkosky
and Wright [3] introduced rolling resistance into the
robotics literature, acknowledging that it had previ-
ously been discussed at length in the literature on
wheels and tires (see, e.g. [4]). We model the result-
ing torque on the object as 74 = —kj Fnlws,wy, O]T
ks F, [AHI,AH!,,O] , where F, = —F, is the normal
force and x; is a constant called the coefficient of
rolling resistance [4].

4.3 The Equations of Motion

Let €y be a local reference frame for the grasped for
the grasped object at one (equilibrium) point of con-
tact and C2 be a local reference frame at the other
(equilibrium) point of contact. Let (fo, Ro) be the
rigid-body transformation which takes C; to Cs. Let
T1 = Ta1 + Tr1 + a1 and 72 = Taz + Tr2 + 742 be the
generated torques at the two points of contact. The
local effect of these torques (i.e. the effect at the point
of contact at which they are applied) is to generate
angular accelerations Ay = [Ab,lL,AbylL]T and
A-‘92L = [A"ngL, A..aygL]T
by, = IsM~'diag(1,1,0)m = Myzlosmi (9)
~1Ro)diag(1,1,0)m = Mj3Irs7s
(10)
], My = InsM 1%, My =

Abyp = Ls(RYM

1 00
010
LisRYM~'RoId;, and M is the inertia matrix of the
object relative to a coordinate frame that is oriented
the same as C; and whose origin is the center of mass
of the object. (Recall from above that the z com-
ponents of the torques are compensated for by fric-
tion.) The torques also cause angular acceleration at
the other points of contact. The remote angular ac-
celerations are

where o3 =

Alig = RosNbop, Abyp = RLAG L (11)



o 71 = 75 = [0,0,7]7 (i.e. the center of mass is the
centroid of the two points of contacts)

e po = 27 and Rg = [ Rgz _01
cosyp siny
sinyy —cosy

contact are diametrically opposed),

] where Rgg =

] for some 9 (i.e. the points of

o Ko = Rp2K,1Ros (note that R;zl = RY, = Ro9)

(a) equilibrium => F1+F2 =0 (l|>) displa.c?g => F1+F2 acts e there exists a choice of the local reference frame
along axis through center of mass C; which simultaneously diagonalizes K,; and
Figure 4: An eigenvector for eigenvalue 0. M.

With this choice of Ci, choose Cy such that Rgs =
where Ry = 123R01;f3. Then, the total angular accel- diag(1, —1). Then, K,1 = K2 = diag(ka, ks), where
erations are ks and ky are the principle relative curvatures. Fur-

- o o = o o thermore, we can write M = diag(my, my). Comput-
A6y = Abrp + Abir, Aby = Abyp + Ab2r, (12) ing the components of A gives

Substituting the values of the torques derived in Sec-

tion 4.2 and writing the equations in matrix form, we

Ay = As = diag(my Fa(r—ky *), maFa(r—k7 ")) (18)

get d RI, Ay = RopAy = diag(my Fa(r—kjb), —ma Fa(r—k71))
ag‘ = Ag (13) (19)
- As = A4 = diag(—manfcj, —manKj) (20)
where g . ) ) ) =

[AOz1, Aby1, Abgz, Abys, Abs, Aby1, Abyo, Abyo)T RT,As = Rz Ag = diag(—mi Fakg, meFnky)  (21)

and where A is the 8x8 matrix .

The eigenvalues of A are
0 0 Iss 0
4= 0 0 0 Ino (14 M =X =0, Aa=—-miFnrs, Ag=-—mafpKy

- Ay RypAy Az Rxds ) (22)

T
RLAr Az Bpds A do = TR (g — it —d(k =) (29)

where Iy is the 2x2 identity matrix and my Fy

~ Xs = (—r; — /K2 + 4k = 1)) (24)
A= MZ?(FZIJTI<r11J_T'lele22+[7'yly_T'TI]T["Fthrl]) 2 d ’
- (15) _ mZFn 2 -1
Ag = Mas(FraJ T K5 J =120 Faalpa+(rya, —122) [~ Fy2, Feo)) A7 = 2 (=ry —/w} =4k —1)) (25)
~ (16) my F —
Az = Rszlez Ay = rchzzMzg (17) Ag = —2—(—l€f — K:? +4(ka” ~ T’)) (26)

The §ystem.described by Equatio.n e s.table if and Hence, the grasp is contact stable if and only if k7l >
only if the eigenvalues of the matrix A all lie in the left rand k1> p
) >

half-plane [9]. Hence, we have derived the condition Note that the eigenvalues A; = 0 and Ay = 0

for contact grasp §tability; a grasp is. contact stable define a two-dimensional subspace of eigenvectors
if and only if the eigenvalues of A lie in the left half- spanned by 7 = [L1,0,1, 0,0,0,0,07 and % =

plane. [0,1,0,—1,0,0,0,0]7. Vectors in this subspace corre-
spond to states of the system where the two points of
4.4 Examples contact are stationary and displaced the same amount

in the same absolute direction. As shown in Figure 4,
in such a state there is no net torque. This borderline
instability is not harmful because the velocity compo-
. ﬁl = ng =1[0,0,—F,)7 (i.e. there is no tangential nents are zero, and hence it does not cause displace-
force at either point of contact) ments from equilibrium to increase in magnitude.

We start by deriving the eigenvalues of A for the class
of grasps satisfying the following conditions:
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Example 5 Let the grasped object be an ellipsoid
given by the equation £?/a® + Y2 b2+ 2%/c? = 1. Let
the finger surfaces be flat. Let the points of contact
be (a,0,0) and (—a,0,0). Then, the principle relative
curvatures are kg = 1/b and k; = 1/c, and the dis-
tance from the center of mass to each point of contact
is r = a. Hence, the grasp is stable if b > a and ¢ > a.
This explains the intuitive assessments of Examples 1
and 3.

Example 6 Let the grasped object be a cube with
sides of length d. Let the fingertips be spherical with
radius R. Let the points of contact be at the centers of
two opposite faces. Then, the principle relative curva-
tures are kg = ky = 1/R, and the distance is r = d/2.
Hence, the grasp is stable if R > d/2. This gives some
insight into why humans often use the less curved part
of their fingertips for grasping bigger objects and the
more curved part for grasping smaller objects.

5 Conclusion

We have distinguished between two types of grasp sta-
bility, spatial grasp stability and contact grasp stabil-
ity, each with a different concept of the state of a
grasp. The previous work on quantifying grasp sta-
bility has focused primarily on spatial stability. Using
examples, we have shown that there are differences
in the stability of grasps which cannot be captured
using any measure of spatial stability and hence that
any full understanding of grasp stability must also in-
volve contact stability. Therefore, we have derived a
quantitative measure of contact grasp stability. To do
this, we have formulated a model of the dynamics of
two-fingered grasps, where the state of a grasp is the
position (and velocity) of the points of contact. This
model is built on concepts and results from the study
of contact kinematics. The resulting equations of mo-
tion are linear; therefore, the system is stable if and
only if the eigenvalues of the matrix which determines
its evolution lie in the left half-plane. While the gen-
eral form of this matrix is complex and does not admit
a closed-form for its eigenvalues, we have calculated
the eigenvalues for some examples. In these cases,
the derived stability corresponds well with intuitive
notions of grasp stability.
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