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Abstract

The kinematics of contact describe the motion of a point of contact
over the surfaces of two contacting objects in response to a relative
motion of these objects. In a previous paper [8], I derived equations
which embody this relationship when the two objects are assumed to
be rigid bodies. In this paper I extend that analysis by dropping the
assumption of rigidity. I derive a set of equations, called the com-
pliant contact equations, which model the kinematics of contact with
compliance. I then analyze an illustrative example from a theoretical
viewpoint and show how results from experiments 1 performed agree
with theory. Finally, I discuss how adding compliance into the model
effects the manipulation tasks described in [8].

1 Introduction

The kinematics of contact describe the motion of a point of contact
over the surfaces of two contacting objects in response to a relative
motion of these objects. Montana [7,8] and Cai and Roth [2] indepen-
dently derived a set of equations (called the contact equations) which
model this relationship assuming the objects are rigid hodies. Not
only is this assumption untrue for the physical world, but there are
good arguments that a significant amount of compliance in a grasping
surface is desirable to aid in the problem of manipulation |4,1]. Hun-
man fingertips are compliant, and there are efforts underway to build
grasping surfaces which are like human fingertips [1,3].

In this paper, I extend the analysis of the kinematics of contact
done in (8] to drop the assumption of rigidity. The results reported
here are a refinement and an introduction into the general literature of
work first described in |7]. The remainder of this paper is broken into
the following sections. Section 2 provides mathematical backgronnd
consisting mainly of definitions regarding the geometry of surfaces, a
subject discussed in greater detail in [6]. Section 3 reviews some of the
definitions and results about the rigid-body kinematics of contact on
which I build {8]. In Section 4, I give some new definitions and derive
a set of equations, called the compliant contact equations, which de-
scribe how the centers of contact on the two surfaces evolve in response
to a relative motion of the objects when the surfaces are allowed to de-
form. Section 5 discusses an example which illustrates the effect of
compliance on the kinematics of contact. I measure the trajectory of
the center of contact on a tactile sensor in response to a known motion
and show how the results fit my model. Section 6 analyzes how two
tasks discussed in [8] which are based on the rigid-body model of the
kinematics of contact have been designed to be robust with respect to
compliance. For the task of contour following I provide experimental
results which confirm this analysis.

2 Mathematical Background

Notation Let C., and C,, be two coordinate frames, where s; and
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37 are arbitrary subscripts. Then, f,,., and R.,., denote the position
and orientation of C,, relative to C,,. Furthermore, ¥,,,, = Hf;,l i?,,, '
and {l,,,, = Rf,,lﬂ,,,‘ are the translational velocity and rotational
velocity of C,, relative to C,,. The vector form of angular velocity is

denoted by @,,.,.

Proposition 1 Consider three coordinate frames Cy, Cz and Cs. The
following relation ezists bet thesr relatsve velocities

T3 = R33012 + R3;Q2525 + s

(1)

s = RE,fhaRas + s (2)

Proof The proof is given in [8] and elsewhere.

Definition 1 A coordinate patch S, for a surface S C R is an open,
connected subset of S with the following property: there exists an
open subset U/ of ®2 and an invertible map f : U — S, %% such
that the partial derivatives f, (i) and f,(#) are linearly independent
for all & = (u,v) € U. The pair (f,U) is called a coordinate system
for S,. The coordinates of a point s € S, are (u,v) = f~l(s). A
2-manifold embedded in R° (which we henceforth call a manifold) is a
surface § C R% which can be written S = U:’=l S;, where the S;’s are
coordinate patches for S. The set {S;}7, is called an atlas for S.

Definition 2 A Gauss map (or normal map) for a manifold § is a
continuous map g : § — §? C R such that for every s € S, g(s)
is perpendicular to S at s. (Recall that S2 is the unit sphere.) An
orientable manifold S is one for which a Gauss map exists. When S
is the surface of a #olid object, we call the Gauss map which points
outward the outward normal map.

Definition 8 Consider a manifold S with Ganss map ¢, a coordinate
patch S, for S, and a coordinate system (f,U) for S... The coordinate
system (f,U) is orthogonal if f,(&) - f,(i#) = O for all ¥ € U. When
(f,U) is orthogonal, we can define the normalized Gauss frame at a
point i € U as the coordinate frame with origin at f(ii) and coordinate
axes

f(ﬂ) = fu(a)/"fu(a)"
#2) = fu(@/ £ @
@) = g(£(g))

(3)
(4
(5)
Note that the coordinate axes are functions mapping [/ to R°. We

call an orthogonal coordinate system (f,U) right-handed if its induced
normalised Gauss frame is everywhere right-handed.

Note For any coordinate patch with an associated Gauss map there
exists a right-handed, orthogonal coordinate system.

Definition 4 Consider a manifold S with Gauss map g, coordinate
patch S, and orthogonal coordinate system (f, U). At a point s € S,,,
the curvature form K is defined as the 2x2 matrix

K = [2(@), #{@) w0/ £ @), 2()/15 @)] ©)




| | G| ELECTRONICS ENGINEERS, INC.

0bj2
obj1

Figure 1: The coordinate systems {no compliance)

where @ = f~!(s). The torsion form T at s is the 1x2 matrix

T = #{@)7T [ZAD)/ 1 fu (@, Z (@) /1 o (D] (7
We define the metric M at s as the 2x2 diagonal matrix
M = diag(|| fu (@), | £ (@) 8)

An example illustrating all these definitions is given in 18].

3 The Kinematics of Contact

We now consider two rigid ohjects which move while m aintaining con-
tact with each other. Rigid bodies will generally make contact at
isolated points rather than over areas of their surfaces. In this section
we investigate the motion of one of these points of contact across the
surfaces of the objects in response to a relative motion of the objects.

Call the objects obj1 and obj2. Choose reference frames C;, and
C,, fixed relative to 0bj1 and obj2 respectively. Let $; c R®and S, C
R3 be the embeddings of the surfaces of obj1 and 0b2 relative to Cy,
and C,, respectively. The surfaces S, and S are orientable manifolds.
Let gy and ga be the outward normal maps for §; and S;. Choose
atlases {Sy,}7%, and {Sz,}72, for S, and S;. Let (f1,,Uy,) be an
orthogonal, right-handed coordinate system for Sy, with normal map
g1. Similarly, let (f2,, Uz,) be an orthogonal, right-handed coordinate
system for Sz, with g2.

Let c,(t) € S; and cz(t) € Sz be the positions at time t of the point
of contact relative to Cr, and C,, respectively. In general, ¢ (t) will not
remain in a single coordinate patch of the atlas {5 }/2, for all time
and likewise for cz(t) and the atlas {Sz,}72,. Therefore, we restrict
our attention to an interval I such that ¢ (t) € S1, and c2(t) € S,
for all t € T and some ¢ and 5. The coordinate systems (f1,,Uy,) and
(f2;» U;,) induce a normalized Gauss frame at all points in S;, and
Sz, We define the contact frames, C,, and C.,, as the coordinate
frames which coincide with the normalized Gauss frames at ¢y (t) and
¢z(t) respectively for all t € 1. We also define a continnous family of
coordinate frames, two for each t € I, as follows. Let the local frames
at time ¢, Cy, (t) and Ci,(t), be the coordinate frames fixed relative to
C,, and C,, respectively which coincide at time t with the normalized
Gauss frames at ¢ (t) and c2(t) (see Figure 1).

We now define the parameters which describe the five degrees of
freedom for the motion of the point of contact. The coordinates
of the point of contact relative to the coordinate systems (f1.,U1)
and (fz,,Uz,) are given by 4(t) = f;l(cl(t)) € U, and @(t) =
fi;l(Cz(t)) € Up,. These account for four degrees of freedom. The
final parameter is the angle of contact, ¥{t), which is defined as the
angle between the z axes of C,, and C,. We choose the sign of ¢ so
that a rotation of C,, through angle —% around its z axis alligns the
T axes.

We describe the motion of obj1 relative to obj2 at time t using
the local coordinate frames, Cy,(t) and Cy, (t). Let v, v, and v be
the components of translational velocity of Ci, (t) relative to Cp,(t) at
time t. Similarly, let w,, w, and w, be the components of rotational
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Figure 2: The coordinate systems (with compliance)

velocity. Then, va, vy, vz, Wg, wy and w, provide the six degrees of
freedom for the relative motion between the objects.

The symbols Ky, T) and M represent respectively the curvature
form, torsion form, and metric at time ¢ at the point cy(t) relative to
the coordinate system (fy,,U;,). We can analogously define Ko, T
and M;. We also let

cos

—siny

Call K; + K the relative curvature form.

Ky = RyK2Ry )

—cos

-

Theorem 1 At a point of contact, if the relative curvature form s in-
vertible, then the point of contact and angle of contact evolve according
to

i =M (K +f(2)*‘([ o ] -1'{2[ o ]) (10)

o =M;‘R.,,(K1+I'fz)"‘([ o ]+K1 [ Z., ]) (11)

¢}=w,+T1M1;11+T2M2'tz (12)

(13)

0=y,
Proof The proof is given in {8].

We call Equations 10-13 the contact equations.

4 Adding Compliance

We now show how to generalize this last result to allow for ohjects
which are not rigid bodies. One important difference is that the ide-
alization of point contact will in general not hold. Instead, there will
be an area of contact. We are interested in its position as a function
of time on the surfaces of the objects. We define the center of contact
to be the point in the area of contact at which the torque is normal to
the surface. We let the position of the center of contact represent the
position of the area of contact. Hence, the center of contact for the
compliant case is the analogue of the point of contact for the rigid-body
case.

We also need to make some new definitions of coordinate systems
and coordinate frames. For each time t, let Sy, (t) and Si (t) be the
embeddings of the deformed surfaces relative to C,, and C;, respec-
tively. There are functions d,{t) : S1 — 4, (t) and da(t) : S2 — S, (t)
which map points on the undeformed surfaces to their positions un-
der deformation. Let fq,(t) = dy(t) o f1, and fu,(t) = da(t) o fa,-
The coordinate systems (f1,,Uy,) and (fz],Lrgy) for Sy, and Sz, re-
spectively are mapped into coordinate systems {f., (t), dy(t)(Uy,)) and
(fa.(t), da(t){Us,)) for coordinate patches of Sy, (t) and S, (t). These
coordinate systems for the deformed surfaces will in general not be
orthogonal.

Let c1(t) € Sa,(t) and ca(t) € Su,(t) be the positions of the
center of contact relative to Cy, and C., respectively. The coordi-
nates of the center of contact are @ (t) = fu, ()" (c1(#)) and #(t) =




Coy—>Ci,—Cy,

Cey—Ci,—=Cy,

Figure 3: Paths from C., to Ci,

Jas(t)~Y(c3(t)). We redefine C.,, the contact frame from obj1, as fol-
lows: at time ¢, the 2 axis is outwardly normal to S4,(t), the z axis
is (£a,(8))u/lI(f2,(t))u]| evaluated at ¢y (¢) and the y axis is the cross-
product of the z axis and the z axis. (This unfortunately introduces
assymetry between the z and y directions.) Define C., similarly. Gy, (t)
and Ci, (t} are defined the same as for the rigid-body case: They are
the coordinate frames fixed relative to Cr, and C,, respectively which
coincide with C;;, and C., at time t. We next define two new families
of coordinate frames, C;, (t) and C;, (¢}, called the intermediate coor-
dinate frames. To get C;, (t), transform the surface S, and ite atlas
by a rigid-body transformation such that the normalized Gauss frame
at ,(t) coincides with C,, (t). Then, C;,(t) is at all times ¢, the nor-
malised Gauss frame at i, (t,) for this transformed surface (see Figure
2).

¥-~-a valocities ¥., and &, for obs1 at time ¢ are defined
as the translational and velocities of C.., relative to C\,(t).
The compliance velocities, #., and @, are defined similarly. The com-
ponents of ¥, and @, are v,,_, Veryr Yerys Weyys Weyy, and w,,,, and
similarly for ¥, and @c,. Define the total velocities # and &, as

v, vy ey, R, [ Yoy, ]

=v, [=]v |+] v, |- Yepy (14)
Ve, Uy Yey, ey,
We, Wg Weye R, Wes,

Ge=1wy, [=|w |+] wey, |~ * Wes, (15)
we, Ws Wey, ~Wes,

¥ continues to be defines as the angle between the = axes of the contact
frames.

Theorem 2 At an area of contact, if the relative curvature form is
invertible, then the centers of contact and angle of contact evolve ac-
cording to

Uy

il1=Mf‘(K,+I?,)—‘([ ;“"‘ ]—ff, [ ":: ]) (16)

&,:M;‘R¢,(K1+I?,)“([ ;“:' ]+K. [ :: ]) (17)

b =wp, + i Myl + T My (18)
0=1u, (19)

Proof In Figure 3 are shown two paths from coordinate frame C.,
to coordinate frame Cj,. We define taking a step along a path to
mean performing the following recnrsive procedure: Express the mo-
tion parameters of C., relative to the new coordinate frame hy apply-
ing Proposition 1 to the motion parameters of C,, relative to the old
coordinate frame and motion parameters of the old coordinate frame
relative to the new one. Following each path will allow us to express
the motion parameters of C., relative to Ci, in two different ways.

For each step in the paths, we now give the motion parameters
of the old coordinate frame relative to the new one. These values ei-
ther come straight from the definitions given above or have derivations
completely analogous to derivations in [8].

Co = Cey R=[R* 0 ],5:0,6:0

0 -1
0 -y 0

Q=]9¢ 0 0 (20)
0 0 o0

of  spring
compliance

cylinder

Figure 4: Device which holds the sensor

Yeae
Ce, = Cyy R=I1,p=0,0= Ve,
Veas
[ 0 —w.,, we,
0= we, 0 ~Wes, (¢2))]
L ~Wea,  We,, 0
Co=Cy + R=Lp=0,9= [ ¥a |
[ o -mMmi, .
. KoM,
8=| TMyi@; 0 M | ()
—(K M, i) 0
v'flt
C.,—Cy : R=15=0,0=| v,
ucu
[ o TWeie  Weyy
Q= w,, 0 —u, (23)
L ~Yesy ey,
C,— G, : R=I,F=0,7= [ M ]
[ o -nma :
. KM, 4,
a=| Mm@ o TR e
—(Ky M ity )t 0
L2
R 0 - =
C,~C, : R= [ 0"’ 1 ],Pé0,0= vy
vz
[ o —Wwz Wy
Q= Wa 0 —Wy (25)
| —~wy w, 0

The rest of the proof is jnst substituting into Proposition 1 four times,
setting equal the two different expr: for the translational and
rotational velocities of C., relative to Cy,, and performing algebraic
manipulation. These steps are left to the reader.

5 An Example

I have performed a series of experiments which measure how the point
of contact moves across the surface of a tactile sensor in response to
different motions of the sensor relative to an object {7). The experimen-
tal setup was as follows. The tactile sensor used is manufactured by
Barry-Wright Corporation and is described in (Wright 1983). It has
a 16x16 grid of sensing elements with inter-element spacing of 0.17.
One notable feature is the high variance of sengitivity among sensing
elements. This could have been compensated for in software, but I
chose not to do so to prove the robustness of the center of contact
calculation.

To hold the sensor, we built the device pictured in Figure 4. It
allows pli translationally in the direction normal to the sen-
sor surface and rotationally around axes parallel to the sensor surface
through the center of compliance. The distance from the center of
compliance to the sensor surface is approximately 77.

The robot used to manenver the sensor is an Automatix AIDG0O.
Using the control software that Automatix supplied, the robot conld
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Figure 5: Eliminating frictional effects
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Figure 6: Pure translation without friction
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Figure 7: Pure translation with friction

only move from point to point or follow a prespecified path of points.

The object which the sensor contacts is fixed with respect to the
base of the robot and is nearly rigid (at least for our purposes). Its
shape is roughly spherical with radius of curvature approximately 3”.

Since the undeformed sensor surface is flat, we can coordinatize its
embedding S; using a Cartesian coordinate system, with u being the
distance in sensing elements along one edge of the sensor surface and
v the distance along an adjacent edge. Then, K, =0, Ty =0 and
M, = 0.11, where 0.1 is the inter-element spacing. The curvature of
the fixed object is roughly 1.

Because the sensor surface is essentially flat, the center of contact
is the centroid of the normal forces. We calculate the approximate

position of the center of contact as
15 15 u
e 2o {5 V) [ v ]

uy
%) = [ = ] =
u 15 15
Ly u=0 Zu:(y

where m(u,v) is the response of the sensing element at position (u, v).
Since the fixed object is rigid, its compliance velocities are ¥., =
¢, = 0. The compliance velocities of the sensor are approximately

m(u,v) (26)

i, e
U, = | ~l¢z Te, = | by (27)
i 0

where 1 is the distance of the sensor surface from the center of compli-
ance and ¢, and ¢, are the angular displacements of the sensor around
the center of compliance about axes parallel to the z and y directions
on the sensor surface respectively. This implies that w.,, = —v,,, /1
and we,, = vc,, /l. Note that we can measure { but must infer ¢, and
4, from the motion of the point of contact.

We use the standard Coulomb model of friction. Static friction acts
s0 as to not let the surfaces slip. This translates into the constraint

v, = U, = 0. Since vy, = vy + ¥, + Ve, and v, = 0, then
Ve,, = —Ug. Similarly, ve,, = —0y. Then, according to our model of
compliance, w.,, = —vz/l and w,,, = vy/l.

Static friction holds until the tangential force needed to maintain
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Figure 9: Initial translation with friction
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the constraint v, = v¢, = 0 is greater than «,, the static coefficient
of friction, times the normal force. At this point, slippage occurs and
kinetic friction replaces static friction. Kinetic friction acts so that
the magnitude of the tangential force is K, the kinetic coefficient of
friction, times the normal force. Kinetic friction holds until v, = v¢, =
0, at which point static friction occurs.

The first experiment I performed examined the system behavior
under pure translation. Because of the limitations of the robot con-
trol, I used a measure-then-move cycle, first measuring the position
of the center of contact on the sensor surface, then repositioning the
robot, and then measuring again. | made two runs using two different
motion strategies. The first moved the rohot so as to translate the
sensor Az = —0.03" in the 7 direction (the direction pointing towards
increasing u) for 13 cycles and then Az = 0.03" for 13 cycles. The sec-
ond performed the same basic motion but eliminated frictional effects
using the procedure illustrated in Figure 5: 1) move the sensor away
from the object so that contact is broken, 2) translate the sensor by
Az, 3) move the sensor back into contact with the object. The results
are pictured in Figures 6 and 7.

We now calculate the theoretical predictions derived from our model.
In the case when frictional effects are removed, vc,, = ve,, = 0. Sub-
stituting into Equation 16 gives

A, = [ ~Azf0.1 ] (28)
0
This is the same result which we would get nsing the rigid-body model.
Figure 6 shows how close the theoretical prediction corresponds with
the experimental results.

We next examine the case when frictional effects are present. The
motion of the center of contact has four phases.

Phase 1: Static friction acts exclusively. Hence, v, = v, = 0. In
response to a translation through Az, wy, = 0 and wy, = ~Az/l
—Axz/7. Substituting into Equation 16 gives

Az/('(?) -0.1) ] (29)

Aty w~ [
When Az = —0.03, Auy, s —0.04. We see in Figure 7 that this phase
lasts for approximately the first four steps. Note that the center of
contact moves in the opposite direction than it does without frictional
effects. Figures 8 and 9 illustrate why this happens.

Phase 2: The forces needed to maintain the constraint ve, = v, = 0
are too great and thus static friction gives way to kinetic friction. Since
the robot stops after every step, static friction has a chance to take hold
between each cycle. However, soon after the robot moves a little more,
kinetic friction takes over again. This continual switching hetween
Kinetic and static friction makes a step-by-step prediction difficult.
On average during this interval, the compliance velocity is zero, and
thus At = Az/0.1. This phase lasts from step 5 to step 13.

Phases 3 and 4 are similar to phases 1 and 2 respectively.

A second experiment was done to test how well the model predicts
system hehavior for pure rotation of the sensor relative to the object.
Two trials were performed, one using the method described above to
eliminate frictional effects and the other leaving in the frictional effects.

R ol




A4fv,
2 -
l .v. n‘

Co S, cycle #
20

5 10 15 25
-1

Figure 10: Pure rotation without friction
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Figure 11: Pure rotation with friction

Each trial consisted of 26 steps, the first 13 steps with Ad, = —0.01
and the second 13 with Af, = 0.01. Since v, v, = 0, the static
friction constraint ve, = v, = 0 implies that v,, = Ve,, = 0. Hence,
Wey, = Wey, = 0. So, compliance has no effect, and therefore the
results of the two trials should be the same. In fact, we see from
Figures 10 and 11 that the experiment agrees with the theoretical
prediction. Substituting into Equation 16 gives Auy, = 73A0,. This
holds appr ly in the experi

ts, and any deviations can be
explained by errors in estimation of the curvature of the object (which
is not perfectly spherical).

6 Manipulation Tasks

When designing manipulation tasks for a compliant environment, there
are two possible approaches to dealing with compliance. One is to not
include compliance in the model but to make the control closed-loop
and have it compensate for the errors introduced by compliance. The
other is to incorporate an understanding of the effects of compliance
into the model on which the task design is based. In [8] there were
manipulation tasks described which took each of these approaches: a
method of contour following uses the first approach and a method of
finding curvature uses the second.

In [8], I discussed a method of following the surface of an arbitrary
unknown object with a tactile sensor. Based on my model of the rigid-
body kinematics of contact, the proposed control laws steer the point
of contact on the sensor surface to some desired point using closed-
loop control to adapt to the unknown and changing curvature of the
object and to damp out any errors due to deviations from the model.
To test how well the control can compensate for the errors introduced
by compliance, I conducted an experiment. The original control laws
were designed to be run as a continuous servo loop. I adapted them
for the measure-then-move experimental setup which I had [7]. With
this set of control laws, I performed two experimental runs, one with
friction and one without, using the method described in Section 5
to eliminate frictional effects. The two runs started with the same
initial conditions. Fignres 12 and 13 show the trajectory of the point
of contact on the sensor surface as the control laws try to steer it to
rero. Notice that there was not that great a performance drop with
the addition of friction.

In [8] I described a method which uses active sensing to determine
the curvature of an unknown object. The idea is to make small move-
ments of the sensor and measure the change in the position of the point
of contact. Substituting the results into Equation 10 gives an equation
whose only unknown is the curvature of the object. This is inherently
an open-loop procedure and is sensitive to any errors. Toreduce the ef-
fects of compliance, we specify that the small sensor niovements should
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Figure 12: Contour following without friction
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Figure 13: Contour following with friction
be purely rotational. Hence, there will be no frictional force causing
the effects documented in Section 5. In general, understanding how
compliance effects the kinematics of contact can help us design tasks
to be robust with respect to compliance.

7 Conclusion

The kinematics of contact provide a powerful model on which to base
design of manipulation tasks. Previous formulations of the kinematics
of contact assumed rigidity for the objects. However, in the physi-
cal world, objects (including grasping surfaces) often have significant
compliance. As shown by experiments I have described, compliance
can cause large deviations from the rigid-body model. Therefore, 1
have derived an extension to the rigid-body kinematics of contact to
include compliance. Using this new model, 1 have explained the results
of the experiments. Finally, I have explored how to make manipulation
applications based on my model of the kinematics of contact rohust
with respect to compliance. To illustrate the robustness of a contour
following algorithm, I have presented the results of an experiment.
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