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ABSTRACT

While genetic programming is
in theory a generally applicable
method for machine learning of
algorithms, it is currently imprac-
tical for certain problem domains
due to its computational require-
ments. We are developing the
EvolvaWare system to utilize the
computational speedups provided
by reconfigurable hardware to speed
the learning process. Addition-
ally, the hardware-based imple-
mentations produced by EvolvaWare
will speed execution of algorithms
once learned. The key compo-
nents of our approach are (i) a
level of abstraction separating al-
gorithms from their hardware im-
plementations and (ii) a reliance
on existing hardware design au-
tomation tools to perform much
of the work of translating algo-
rithms to their hardware imple-
mentations. We discuss the evo-
lution of the EvolvaWare design,
the application of EvolvaWare to
learning of a sorting network, and
plans to apply EvolvaWare to learn-
ing of edge detection algorithms.

1 Our Vision
Genetic programming (GP) is a powerful and general ap-
proach to machine learning of algorithms (Koza, 1992).
However, there are many problem domains for which GP
is not practical due to computational constraints. When
evaluating a single algorithm takes a relatively long time,
then evaluating tens of thousands or hundreds of thou-
sands of algorithms is infeasible. Image processing and

signal processing are such domains, where the amount
of data to be processed by any algorithm make learn-
ing of such algorithms with GP impractical on standard
hardware.

A field-programmable gate array (FGPA) is a chip
whose gates and connections can be programmed by
a user rather than being fixed at the factory (Trim-
berger, 1994). Many current FPGAs are infinitely re-
programmable, i.e. capable of having their configuration
altered as often as desired. FPGAs are examples of the
general category of reconfigurable hardware. They have
the potential to greatly speed up certain types of com-
putation as compared with general purpose processors.

For certain problem domains, including image and
signal processing, FPGAs provide a potential approach
for relatively inexpensively achieving the large speedups
necessary to make GP learning feasible (in addition to
providing a means for rapid execution of these algo-
rithms once learned) (Peterson & Athanas, 1996). The
EvolvaWare project seeks to make this potential a reality
while adhering to the following four design goals:

Portability - First, we want algorithms that are not
dependent on the features of a particular hardware plat-
form. Second, we want it to be relatively easy to move
solutions and the whole EvolvaWare system between dif-
ferent hardware platforms. This ensures that the learn-
ing process need not be repeated for each platform.

Scalability - While it is good to start with small
problems with small amounts of data, the switch to large
problems with large amounts of data should not be overly
difficult.

Adaptability - It should be relatively easy to change
the GP primitives (functions and terminals) for a par-
ticular problem or change the whole problem.

Executability - Not only should the EvolvaWare
system provide a way to make GP learning faster, but it
should also provide a way for speeding up the execution
of the solution after being learned.

2 Background
2.1 Hardware Design with VHDL
A hardware description language (HDL) allows hardware
to be specified and modeled abstractly as a computer



program. Each HDL generally has one or more sets of
tools that allow (i) simulation of the hardware specified
by a program and (ii) compilation of a program into a
hardware configuration (either an FPGA bit configura-
tion or an ASIC configuration).

The compilation procedure usually involves at least
two steps. First, a logic synthesis tool transforms the
HDL program into a gate-level netlist, which is a specifi-
cation of the gates and their interconnections (Sangiovanni-
Vincentelli, El Gamal & Rose, 1993). Second, a place-
and-route tool transforms the gate-level netlist into an
actual hardware configuration by placing the gates. If
the target hardware is an FPGA, the bit configuration
can then be downloaded into the chip.

While there exists the possibility that a logic syn-
thesis tool can target two different types of FPGAs, the
place-and-route tools are always specific to a particular
chip. The place-and-route tools are usually supplied by
the chip vendor and are often the slowest part of the
compilation process.

VHSIC Hardware Description Language (VHDL), where
VHSIC stands for Very High Speed Integrated Circuit,
is an industry and IEEE standard (Perry, 1994). There
exist a variety of commercially available design tools
for VHDL covering most of the different types of FP-
GAs. Most commercial logic synthesis tools even allow
changing between different types of FPGAs by flipping a
switch. There also exist commercially available libraries
of commonly used functions (such as FFTs and convo-
lutions) written in VHDL.

2.2 Other Evolvable Hardware
There has been a variety of different research on utilizing
evolutionary algorithms to learn hardware configurations
(Sanchez & Tomassini, 1996; Higuchi, 1997). We now
discuss a sampling of approaches and why none of these
meets all of our design criteria.

Thompson and Higuchi et al. - Thompson first
reported the direct invocation of an FPGA (as opposed
to simulation of the FPGA logic) in measuring fitness
levels of hardware configurations during evolution (Thomp-
son, 1996). He represented the function and connections
for all the cells of the FPGA as a large bit string and
used a standard genetic algorithm to optimize the con-
figuration. Using this approach, Thompson was able to
evolve a variety of circuits, including a robot controller.

Higuchi’s group uses an approach similar to Thomp-
son’s based on a direct representation of the hardware
configuration as a bit string (Iwata et. al, 1996). Their
variable-length genetic algorithm allows selection of an
optimal number of cells in the FPGA. They have applied
this to problems in pattern classification.

From our perspective, there are two problems with
approaches using direct representation. First, they are
not portable but rather are geared to a particular hard-
ware platform. Second and more importantly, they cur-

rently will not scale to the large problems that are of
interest to us.

Koza et al. - Koza’s group used GP to evolve a sort-
ing network and reconfigurable hardware to speed the
evaluation of each individual (Koza et. al, 1997). Their
representation was the standard GP parse tree. They
created a tool that rapidly translated a sorting network
parse tree into a bit-based hardware sorting network,
which they could then use to evaluate the sorting net-
work performance.

While they succeeded in speeding the learning pro-
cess for this problem significantly, this approach violates
all four of our design goals. The translation tool was
specific for a particular hardware platform and hence not
portable. Creating such a translation tool for more com-
plex problems will be prohibitively difficult, and hence
the approach is not scalable. The translation tool re-
lied on specific aspects of the problem, and hence it is
not adaptable to other problems. Finally, the hardware
circuit created was a bit-based sort, which cannot be
executed to perform the more usual integer-based sort.

Hemmi et al. - Hemmi’s group represents a hard-
ware configuration indirectly via use of the hardware de-
scription language Structured Function Description Lan-
guage (SFL) (Hemmi, Mizoguchi & Shimohara, 1995).
They use GP to evolve trees of rewriting production rules
that create SFL programs by their application to some
starting program. They utilize the simulation capability
of the SFL design tools to evaluate the performance of
each SFL program generated. After learning is complete,
they potentially use SFL compilation tools to create the
hardware implementation of the learned specification.

One problem with this approach is that it slows the
learning process rather than speeding it. Simulating a
hardware circuit takes more time than actually imple-
menting in software the algorithm embodied in the hard-
ware. The speedups come only after the learning is com-
plete and the specification is implemented in hardware.

A second problem is with scalability. The rewriting
production rules do not provide the level of abstraction
needed to enable learning for large problems.

deGaris et al. - Yet another approach is that of de-
Garis’ Brain Builder group, which is working on build-
ing a large analogue of the human brain (deGaris, 1996).
The underlying hardware is a programmable cellular au-
tomaton. The update rules for the cellular automaton
will be learned by a genetic algorithm. While this ap-
proach has the big advantage of having scalability inher-
ent in its design, it relies on special-purpose hardware
that does not allow arbitrary functionality and is not
generally available.

3 The EvolvaWare System
EvolvaWare is a system still under development. Its de-
sign has undergone a series of revisions aimed at cor-



Figure 1 Original EvolvaWare design

recting flaws, leading to the current design that meets
all of our criteria. In this section, we trace the history of
the design, detail a set of experiments on a small prob-
lem that helped shape the design, and discuss a large
problem to which we will next apply EvolvaWare.

3.1 Original Design
Figure 1 shows our original design for the EvolvaWare
system. To evaluate each parse tree that the GP engine
generates, that parse tree is first translated into a VHDL
program by a parse-tree-to-VHDL translator. A logic
synthesis tool and a place-and-route tool are automati-
cally invoked in succession to transform the VHDL pro-
gram into an FPGA bit configuration. A driver down-
loads the bit configuration to the FPGA, stimulates the
FPGA with the test data, evaluates the results, and
passes the evaluation back to the GP engine.

The piece that requires major reworking for each new
problem domain is the parse-tree-to-VHDL translator.
Each GP primitive (i.e., function or terminal) needs to be
implemented as a structural block in VHDL. Then, soft-
ware needs to be implemented that can take the struc-
tural blocks corresponding to the GP primitives and con-
nect them as specified by a particular parse tree.

This design meets our four design criteria. It is portable
because it is easy to recompile the VHDL specification
for different target hardware. It is scalable to large prob-
lems inasmuch as GP itself is scalable: one approach is
by definition of high-level primitives that hide the large
amount of data and processing underneath. It is adapt-
able to new problems as much as standard GP is: a new
problem requires coding a new set of primitives. It is
executable insofar as it generates the actual hardware
configuration that later needs to be executed.

However, this design has a major flaw. Currently
available tools for compiling VHDL programs into hard-
ware configurations are slow, particularly the place-and-
route tools. Even the fastest tools take much longer to
execute than just executing the GP algorithm directly.
Hence, we achieve the opposite effect from our primary
goal, slowing the learning process rather than speeding
it. Therefore, we require a revised design.

Figure 2 First revised design

3.2 First Design Revision: Software-Based
Evaluation

Figure 2 shows our revised design. Note that it is the
same as the original design except that the evaluations
of parse trees are performed using the standard software-
based method rather than transforming them into hard-
ware. Translation into a hardware configuration occurs
only at the end when a best parse tree has been found.

This approach is no worse than standard GP (and,
in fact, is standard GP) as far as the learning process is
concerned and has the advantage of automatically pro-
ducing a hardware implementation of the algorithm at
the end. Still, our primary goal of speeding the GP
learning process is not yet met, and hence this design
also needs to be revised. However, before proceeding to
a discussion of the next design revision, we first discuss
an application of this design to a simple test problem.

3.3 Evolving Hardware Sort: First Pass
There have been two different approaches to the appli-
cation of GP to the problem of learning sorting algo-
rithms. Kinnear uses GP to learn algorithms that sort
an arbitrary-length list of numbers (Kinnear, 1993). Be-
cause the length of each list is unknown, this requires
some GP primitives that iterate over a list or a portion
of a list. Koza’s group uses GP to learn sorting networks
optimal for a fixed-length list of numbers (Koza et. al,
1992). Because the list length is fixed, operations (in
particular, the COMPARE-EXCHANGE primitive) can
be specified for particular elements of the list without
relying on iteration. Because arbitrary-length lists and
iteration primitives introduced too many complications
in terms of hardware synthesis, we used fixed-length lists
for our test problem.

Primitives - We used a similar set of primitives to
that used by Koza. These are given in Table 1 along with
their input and output data types for enforcing type con-
straints (Montana, 1995). EXECUTE-TWO is equiva-
lent to Koza’s PROG2, COMPARE takes two elements
of the list and exchanges them if the second is less than



Primitive Input Types Output Type
EXECUTE-TWO VOID VOID

VOID
COMPARE LIST-INDEX VOID

LIST-INDEX
ELEMENT-i none LIST-ELEMENT

Table 1 Primitives for sort

the first, and ELEMENT-i for i = 1, ..., N is an index
into the ith element of the list.

Evaluation Function - The evaluation function we
minimized was a linear combination of three compo-
nents: one which counted inaccuracies in the sorting of
a set of lists, one which counted the number of COM-
PARE primitives, and one which counted the number of
inherently serial steps in the sorting network (because
some comparisons can be done in parallel). Note that,
when finally translated into an FPGA configuration, the
number of sequential steps will be roughly proportional
to execution time, and the number of compares will be
roughly proportional to chip area. Hence, minimizing
these quantities leads to better hardware designs.

Parse-Tree-to-VHDL Translator - The parse-tree-
to-VHDL translator converts any parse tree made up of
the specified primitives to synthesizable VHDL code that
executes the specified functionality. An example of the
results of translation is shown in Figure 3. The VHDL
code at the bottom specifies the same functionality for
a hardware circuit as the parse tree at the top. There is
a small amount of additional VHDL code necessary to
make the specified VHDL code executable in hardware,
namely some way to get the data in and out of a black
box component. We describe this additional hardware
below in our discussion of the board and driver.

The execution of the translator has two phases. The
first phase consists of an execution of the parse tree that
differs from the standard execution in that the COM-
PARE primitive does not actually do a compare but
rather generates VHDL code for one of the instantia-
tions of the compare entity and updates counters that
keep track of which tmp or bbin signal corresponds to
which list element. The second phase does placement
of all the surrounding code (which except for the dec-
laration of the tmp signals is the same each time) and
a replacement of tmp signals with bbout signals where
appropriate.

FPGA Board and Driver - The board on which
we implemented our FPGA configuration was an APS-
X84 board from Associated Professional Systems. The
FPGA chip on the board was a Xilinx 4010e, which has
10K gates. A driver supplied by APS allows communi-
cation with the board for downloading of hardware con-
figurations and data.

For getting data on and off the chip, we created a
buffering scheme. An internal buffer capable of holding

Figure 3 Parse-tree-to-VHDL translation

four eight-bit integers is created. Data is moved on the
input pins one eight-bit integer at a time. The inputs
and outputs for the sorting black box are defined to be
the buffer. After the sort is complete, the data is moved
off one integer at a time.

Results - The results were that we were able to
consistently find optimal hardware designs for the four-
integer sort problem within 2000 evaluations. (Because
we use a steady-state GP, we count evaluations rather
than generations.) The GP learning required a total of
14 seconds, and the transformation to a FPGA configu-
ration at the end required about 7 minutes. The parse
tree and VHDL code in Figure 3 show one of the optimal
solutions found. Note that it contains five compares and
three sequential steps.



Figure 4 Second revised design

3.4 Second Design Revision: On-Chip Prim-
itive Execution

Figure 4 shows our second revised design. In this de-
sign, the hardware is brought back inside the GP learn-
ing loop. However, no compilation of VHDL code is
done during execution of this loop. Instead, all primi-
tives intended for execution on an FPGA are compiled
beforehand. The parse trees are executed in the same
CPU as the GP engine. When a primitive is encountered
that has an associated FPGA implementation, then: (i)
the primitive’s FPGA configuration is downloaded onto
the FPGA (unless it is already there), (ii) the inputs
returned from the primitive’s children in the parse tree
are fed into the FPGA, and (iii) the outputs read off
the FPGA are returned to the primitive’s parent in the
parse tree.

For primitives that are computationally intensive and
map well to reconfigurable hardware, this approach can
speed their execution (and hence the learning process)
greatly. However, because of the overhead associated
with invoking an FPGA, primitives that are not compu-
tationally intensive or do not map well to an FPGA are
best performed on the CPU.

Optionally, at the end of the learning process, the
entire parse tree can be compiled into a single hard-
ware configuration (chip area permitting). This final
step is optional because the on-chip primitive execution
approach provides a way to speed execution of a parse
tree after learning as well as during learning.

3.5 Evolving Hardware Sort: Second Pass
The sort problem is not a good test of our new design
because: (i) the only primitive appropriate for execution
on a FPGA, COMPARE, is not nearly computationally
intensive enough to obtain benefit from an FPGA and
(ii) with only a single primitive, there is no swapping

Primitive Input Types Output Type
THRESHOLD IMAGE IMAGE

PIXEL-VALUE
IMAGE-MAX IMAGE IMAGE

IMAGE
CONVOLUATION IMAGE IMAGE

WINDOW
ORIGINAL none IMAGE
WINDOW-i none PIXEL-VALUE
RANDOM none PIXEL-VALUE

Table 2 Primitives for edge detection

of FPGA configurations required. However, for the sake
of simplicity, we used this problem for the initial test of
this design.

[Note that using on-chip primitive exeuction allows
easy translation of iterative constructs such as those used
by Kinnear. The iterations are just performed in the
CPU. However, we stuck with the sorting network ap-
proach.]

The results were that, as expected, using a FPGA
to evaluate the COMPARE primitives slowed down the
learning process a little. We therefore looked for a prob-
lem that had computationally complex primitives in or-
der to demonstrate the benefit of reconfigurable hard-
ware.

3.6 Target Problem: Edge Detection
While GP has been applied to image processing prob-
lems, it has tended to be either with small binary im-
ages (Koza, 1992) or working at the feature level rather
than the pixel level (Johnson, Maes & Darrell, 1994),
hence avoiding the computational load of working with
pixels of full-size gray-scale images. The edge detection
problem we now discuss does involve pixel-level process-
ing of gray-scale images and hence should fully test the
EvolvaWare system.

We will start with the primitives in Tables 2. THRESH-
OLD changes all pixels in the specified image with values
above the specified value to have the highest possible
value and all other pixels to have the lowest possible
value. IMAGE-MAX produces an image whose pixels
have the value that is the maximum of the correspond-
ing pixel values in the two specified images. CONVO-
LUTION produces an image by applying the specified
convolution window to the specified image. ORIGINAL
returns the original image. The WINDOW-i’s are 3x3
convolution windows whose entries are simultaneously
evolved by a standard genetic algorithm similar to how
such simultaneous evolution was utilized in (Montana &
Czerwinski, 1996). RANDOM defines a random pixel
value.

We hope to evolve something similar to a Sobel edge
detector. A Sobel edge detector has two 3x3 convolu-
tions, one tuned to horizontal edges and one to ver-



tical edges, plus logic that decides when one or both
have crossed a threshold indicating an edge. Learn-
ing a more sophisticated edge detector such as Canny’s
(Canny, 1986) is still a distant goal.

3.7 Third Design Revision: Parse Tree
Virtual Machine

In the process of attempting to implement the edge de-
tection problem using the design describe in Section 3.4,
we discovered certain problems:
• Even for relatively small images, full versions of the

image processing primitives (such as CONVOLUTION)
do not fit on even a large (64K gates) FPGA.

• Getting image data on and off an FPGA is a poten-
tial bottleneck because there are a limited number of
input pins, allowing only a limited number of bits to
be loaded per clock cycle.

• Another big potential bottleneck is the transfer of im-
age data to and from the FPGA board with each ex-
ecution of a primitive.
We therefore have adopted the following changes to

the system design: First, for primitives that do not fit
fully on an FPGA and/or have bottlenecks getting data
on and off, we use a pipeline approach. Data is streamed
into the FPGA once per fixed period. After a startup
time, data flows out of the FPGA at the same rate. The
FPGA performs its function on one section of data at
a time. Implementations of a median filter and convo-
lution using this approach are described in (Peterson &
Athanas, 1996).

Second, to eliminate transfer of image data, a CPU
on the same board as the one or more FPGAs handles
the parse tree execution. All image data including the
intermediate results are stored in memory on the board.
Commercially available boards provide such a setup, in-
cluding one from TSI Telsys that has an UltraSparc CPU
in addition to its two FPGAs.

We have given the name parse tree virtual machine to
the software on the board that executes parse trees plus
the primitive FPGA configurations. Like other virtual
machines, it allows execution of programs in an abstract
environment independent of the underlying platform.

4 Conclusion
We have set for ourselves the goal of creating a system
that, for computationally intensive problems, used re-
configurable hardware to speed both the GP learning
process and the execution of learned algorithms. We
have specified that this system should satisfy the criteria
of portability, scalability, adaptability and executability.
Driven by a sequence of implementations and experi-
ments, we have revised the design of this system to the
point where it should be capabile of realizing our goal.
What remains is to demonstrate this capability on the
selected problem of edge detection in an image.
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