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ABSTRACT

In this research we developed a completely automated approach to hardware design based on integrating three core technologies into one comprehensive system, namely, genetic programming (GP), VHSIC hardware description language (VHDL), and field programmable gate arrays (FPGAs). Our system uses an automated GP engine, as opposed to a human designer, to evolve a hardware design composed of one or more FPGAs that will maximally achieve an application’s software requirements. Several variants of our system exist at this point in time. Other variants are currently under development. The focus of this paper is to describe our original system design and its most recent revision to date.

1. INTRODUCTION

Background

Adaptive Computing Systems (ACS) is a new paradigm shift in computing that promises to empower hardware with the same flexibility and adaptability that software has traditionally had, all the while still retaining the hardware’s indisputable performance benefits. An ACS system enables an application to define and (re)configure its underlying hardware resources (processors, logic, data paths, etc.) in a manner that maximally achieves the application’s software requirements. In ACS, banks of field programmable gate arrays (FPGAs) serve as the core components of the overall system architecture, enabling the same hardware resources to be reprogrammed depending on mission needs and application requirements. Although ACS technologies date back to the early 1970s, modern ACS technologies tend to be more greedily oriented in that they maximize hardware resource usage at each particular instant in time in an effort to optimize performance. Early research has demonstrated that 2-3 orders of magnitude improvements in performance are possible using ACS technologies for various defense-related data dependent optimization problems (see http://www.darpa.mil/ito/research/acs/projects.html).

Field programmable gate arrays are reprogrammable hardware devices that have historically been used by hardware designers to create rapid prototyping systems for emulating complex hardware components (e.g., application specific integrated circuits [ASICs], microprocessors, etc.). FPGAs are fast becoming a mainstream technology in the commercial marketplace today due to their unlimited ability to be reprogrammed (on the fly if necessary) and their steady improvement in performance and density every year. In fact, current estimates predict that over one million gates on a high-end FPGA device is likely by the Year 2000.

Genetic algorithms (GAs) [2] and genetic programming (GP) [3,4,5] are both optimization techniques loosely based on biological models of evolution and selection, and each has proven to be a powerful optimization approach in a variety of domains including hardware design. In general, a GA/GP has a population whose members breed to create new individuals via the crossover and mutation reproductive operators.  The individuals are selected to breed based on their fitness level (according to a problem-specific evaluation function) with the fittest most likely to be chosen for the next generation.  Over time (generations), the population increases in fitness, converging towards an optimal (or nearly optimal) individual (solution) in the population. A GP is a special type of GA wherein the individuals in the population are parse-tree encodings of computer programs (or algorithms) that will solve the specified problem in an optimal (or near optimal) manner, whereas a conventional GA uses fixed-length vector encodings of potential solutions to the problem.

VHSIC hardware description language (VHDL) [1,7] is an industry, IEEE, and DoD standard hardware description language (HDL) that allows hardware to be specified and modeled abstractly as a high-level computer program. VHDL allows hardware to be specified at various levels, including behaviorally (or algorithmically) in terms of operators, procedures, and functions, or structurally in terms of components, modules, and port/pin interconnections. VHDL supports the development of COTS-based libraries of pre-designed, pre-verified, and reusable hardware components well suited for problems within a given application domain. Additionally, extensive third-party toolkits exist in the marketplace that enable VHDL hardware designs to be verified and translated at various abstract levels. For example, commercial VHDL simulators are used to ensure that the functional and timing requirements of VHDL and lower gate-level netlist hardware descriptions are properly met. Logic synthesizers transform VHDL descriptions to gate-level netlist descriptions, while FPGA place-and-route tools map the logic within a VHDL synthesized gate-level netlist description into the component logic blocks of an FPGA.

Scope

In this research we developed a completely automated approach to hardware design based on integrating three core technologies into one comprehensive system, namely, GP, VHDL, and FPGAs.  Our system enables the best piece of hardware to be put in place in solving a specified problem by using an automated GP engine, as opposed to a human designer, to discover (learn, evolve) the hardware design that is optimal. The hardware design process in our system is based on linking a GP engine to a hardware emulation device composed of an FPGA(s) on a printed circuit board (PCB) and various VHDL toolkits and hardware component libraries.

Several variants of our system exist at this point in time. Other variants are currently under development. In [6], interested readers can find a discussion tracing the evolution of the various system designs, with examples of system performance of these designs based on a series of experiments conducted on a small set of problems (i.e., sorting networks and edge detection). The focus of this paper is to describe our original system design and its most recent revision to date. Although the original and current system designs are still composed of the same constituent parts (at the top-level), the control flow through the systems are different due to unexpected performance limitations of some of the supporting and required VHDL tools. Both designs will be described in detail.

[image: image1.wmf]FPGA Board

and Driver

Human

Hardware

Designer

VHDL and

FPGA Tools

Hardware Emulator

FPGA

program

evaluation

VHDL

program


Figure 1. Conventional Hardware Design Environment

2. Original System Description

In this section we provide an overview, rationale, and description of the principal component parts of the original system design (termed EvolvaWare™ in the sequel).

Overview

EvolvaWare is a novel approach to the development of optimal hardware designs that is an alternative to the approach used in today's conventional hardware design environment. Figure 1 illustrates a very simplistic view of a conventional hardware design environment, while Figure 2 illustrates how EvolvaWare differs from such an environment. For the former, we are assuming an environment where hardware designers use FPGAs for purposes of creating rapid prototyping systems for emulating complex hardware components (such as ASICs and microprocessors).

As is clearly illustrated, at the top-level, the two environments differ primarily by a human hardware designer being replaced with an automated optimization-based GP Engine integrated with a GP-to-VHDL Translator. Both EvolvaWare and the conventional environment are integrated with a hardware emulation device to support rapid prototyping (i.e., generation, transformation, evaluation, verification) of hardware designs in reprogrammable FPGA hardware. The hardware emulator transforms and downloads the VHDL program into the FPGA(s) with the aid of hardware design automation tools, i.e., VHDL simulation, logic synthesis, and FPGA partitioning, place and route tools. Each hardware design downloaded into the FPGA(s) is then tested and evaluated by invoking the FPGA(s) with an input test data set (not illustrated) specific to the problem at hand.
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Figure 2. Original EvolvaWare System Design

A key difference (and innovation) in the two approaches is in the generation of hardware designs as specified by the VHDL programs, i.e., the EvolvaWare system invokes an automated GP Engine (process) to generate the hardware design, whereas the conventional hardware design environment requires a human in the loop to generate the design. As a consequence, unlike in a conventional hardware design environment, EvolvaWare allows for a completely automated hardware design process (from specification to compilation and implementation).

Rationale

The rationale for the original system design in terms of integrating the three core technologies of GP, VHDL, and FPGAs into one system in an effort to evolve in a completely automated manner an optimal (or nearly optimal) hardware design for a specified problem is as follows. High-level VHDL program specifications of hardware designs allows for hardware to be abstracted and modeled algorithmically as computer programs.  GP can learn computer programs (via an internal parse-tree syntax). A clean one-to-one mapping between GP parse-tree syntax and VHDL program specifications can be made. As a result, GP can indirectly discover (learn, evolve) the VHDL program specification corresponding to a hardware design. Once a VHDL program specification is generated, integrated and automated VHDL and FPGA hardware design tools allow for it to be transformed, downloaded, and evaluated in reprogrammable hardware. As a result, EvolvaWare can adapt a hardware design to maximally achieve the application’s software requirements.

Another rationale for the original design was that it was our view that highly-efficient and novel hardware designs were more likely to be produced using an optimization-based GP engine as opposed to using a human hardware designer. In general, when developing a hardware design to solve a given problem, the space of possible hardware designs that can solve the problem is vast and varied. In conventional design environments, the space of hardware designs that a human designer can explore is constrained by the skills and experiences of the designer. To make tractable difficult and complex problems, the human designer must often simplify and constrain the problem; this further reduces the hardware design space that can be explored. Over simplification, designer inexperience, and unclear design goals and/or intent often translate to suboptimal, inefficient, unpredictable, and costly hardware designs.

In contrast, the scope of the hardware design space that a GP engine is able to explore is significantly beyond that of a human designer. The GP engine is superior to a human designer in driving the hardware design process in that it can automatically and rapidly generate, instantiate, verify, and evaluate (in hardware) potentially tens of thousands of candidate hardware designs in search of the optimal (and potentially novel) one. Moreover, the GP engine can explore and analyze relationships and tradeoffs between functional and physical aspects of the hardware design that may never have been conceived by human designers. Furthermore, hardware designs are evaluated according to the overall global behavior they exhibit; no other criterion or constraints are imposed upon the structure or dynamics of the problem. This enables hardware designs to be evolved without the enforcement of any spatial structure, imposition of modularity, or dynamic constraints (such as a synchronizing clock or handshaking protocols).

GP Engine

The role of the GP Engine is to: (i) generate populations of hardware designs represented as parse-tree structures and pass them to the GP-to-VHDL Translator for translation to VHDL, (ii) select the fittest hardware designs for breeding in future generations based on their evaluation scores returned by the Hardware Emulator, and (iii) evolve the population of hardware designs using crossover and mutation reproductive operators.  Note that the hardware designs selected for breeding are based on their fitness level according to a problem-specific evaluation function. Also note that, over time (generations), the population increases in fitness, thus converging towards an optimal (or nearly optimal) hardware design in the population.

In [5] is a description of a GP toolkit used by the GP Engine to ensure efficient GP parse-trees were generated via strong-typing semantics. Strong typing of GP parse-trees constrains the population of hardware designs by restricting the search space to those designs that are strongly-typed based on data types, and by generating only new strongly-typed members via the reproductive operators. Also, given that rapid convergence to the optimal (or near optimal) hardware design was a primary design goal, the GP toolkit allows for domain knowledge to be exploited in the GP Engine. In particular, by using a problem-specific set of GP primitives at the appropriate level of abstraction for the parse-tree structures, the GP Engine was able to evolve good hardware designs quicker.

GP-to-VHDL Translator

The GP-to-VHDL Translator converts a parse-tree structure of a hardware design to an equivalent representation in VHDL. The hardware design as specified by the VHDL program is logically equivalent to the hardware design as specified by the GP parse-tree. Note that the utilization and execution of the GP-to-VHDL Translator in the original design for EvolvaWare differs than it does in the present revised design. In sections 4 and 5 this will be described in more detail.

We were able to boost the performance of the GP Engine by embedding ancillary hardware-specific tasks into the GP-to-VHDL Translator. In particular, memory and buffering operations (e.g., reading and writing data on and off the FPGA) were explicitly included as part of the GP-to-VHDL Translator process and not part of the evolution process in the GP Engine. Without this being explicitly included, the GP Engine would have to evolve these required operations which is undesirable since (i) they are required in every design, and (ii) they are invariant from one design to the next. By including these operations explicitly, the GP Engine can dedicate more effort to learning and evolving more algorithmic hardware design aspects of the problem.

Hardware Emulator

As Figure 2 illustrates, the Hardware Emulator is composed of a suite of VHDL and FPGA Tools as well as an FPGA Board and Driver. For the FPGA Board and Driver, the board on which we implemented our FPGA configuration was an APS-X84 board from Associated Professional Systems (APS). The FPGA chip on the board was a Xilinx 4010e, which has 10K gates.  An FPGA device driver supplied by APS allows communication with the board for downloading of hardware designs in FPGA format and for downloading test data to test the FPGA programmed with the hardware design. For getting data on and off the FPGA, we created a buffering scheme where an internal buffer large enough to hold the test data (or a subset thereof) was created on the FPGA. The test data was transferred across a communication bus between the board and a PC for which the GP Engine and the GP-to-VHDL Translator were resident.

For the VHDL and FPGA Tools environment several tools were included: (i) VHDL simulator for simulation of the hardware design as specified by a VHDL program, (ii) logic synthesizer for compilation and transformation of the VHDL program into a gate-level netlist description targeted for our Xilinx 4010e FPGA, and (iii) Xilinx FPGA place-and-route tool for mapping the gates of the synthesized gate-level netlist description into the logic blocks of the actual Xilinx 4010e FPGA. The FPGA bit configuration then was downloaded into the FPGA device via an APS-supplied driver. Although the capability existed, because it was beyond the scope of our initial research effort, we did not exploit the VHDL simulator for ensuring hardware design compliance with functional and timing requirements.

Note that not shown in Figure 2 and used in the Hardware Emulator were user-defined and standard COTS-based libraries of pre-designed, pre-verified, and reusable hardware components well suited for the types of optimization problems we were interested in solving. These libraries included basic VHDL component models such as adders, multipliers, comparators, DRAMs, and network I/O protocols [9]. Additionally, in domains involving complex computations, core processing components such as FFTs, convolutions, compression, and encryption (DES) [8] have VHDL specifications in existing libraries and can be used as basic building blocks in specifying more complex functionality. The benefit of hardware component libraries is that they allow the designer to: (i) minimize wasteful duplication of effort developing VHDL specifications for well-defined hardware components, and (ii) maximize reuse of the various format descriptions for components that may persist within a hardware design from one generation to the next in the GP Engine’s evolutionary process.
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Figure 3. Control Flow in Original EvolvaWare System

3. Original System Control Flow

In this section we describe how control flowed in the original system design, and how it allowed for an optimal (or nearly optimal) hardware design to a specified problem to evolve.

Problem Setup

Initially, a hardware designer needs to setup the problem to be solved by performing the following three tasks: (i) select a set of GP primitives for the GP Engine to process over that will be representative of the types of hardware designs expected to solve the problem, (ii) enhance (augment) the GP-to-VHDL Translator to support mapping the new GP primitives in the parse-tree structures to VHDL specifications, and (iii) define a problem-specific evaluation function that will allow the Hardware Emulator to return an evaluation metric for each hardware design tested in the FPGA device.

Once the setup is completed, the training data to be used by the evaluation function in the GP Engine needs to be specified and provided. Once provided, the EvolvaWare system is then ready for execution, which is illustrated in Figure 3, and consists of three fully automated processes, namely, Initialization, Reproduction, and Evaluation.

Initialization

During Initialization, the GP Engine generates an initial population of hardware designs represented as parse-tree structures. Once an initial population is formed, the GP Engine starts the evolutionary process which is a cycle alternating between the Evaluation and Reproduction phases. The population continually evolves until it (inevitably) converges to a hardware design that optimally solves the problem.

Reproduction

Reproduction provides a way for generating new (and improved) populations of hardware designs through an iterative process of removing the worst (low fitness) designs in the population and replacing them by new ones. These new hardware designs are generated through the crossover and mutation reproductive operators on the GP parse-tree structures.

Recall that to ensure efficient GP parse-trees were generated, the GP Engine enforced strong-typing semantics. In particular, crossover and mutation are significantly more useful when they always produce a syntactically valid strongly-typed hardware design. For crossover, an approach which arbitrarily cuts and pastes branches between two parent parse-trees to produce the child parse-tree will almost certainly result in a syntactically invalid child parse-tree. The net effect would be a potentially significant degradation in the overall efficiency of the evolution process. In contrast, an approach which cuts and pastes only strongly typed branches of the parse-trees will always result in a syntactically valid child parse tree, and the overall process is sufficiently efficient to evolve useful hardware designs.

Evaluation

Evaluation enables the hardware designs generated by the GP Engine to be transformed, downloaded, and evaluated in the FPGA(s). Note that in the original system design, Evaluation includes executing each of the VHDL tools in-line for every generated GP parse-tree, that is, for each parse-tree that the GP Engine generates, prior to the GP Engine receiving the evaluation metric from the Hardware Emulator, the latter needed to first transform the entire parse-tree to numerous formats. Of particular importance was the FPGA place-and-route tool which turned out to be significantly slow even for relatively small sized problems [6], and, as a result, led to the present revised system design.

In general, however, tasked to measure the fitness of the potentially tens of thousands of hardware designs generated by the GP Engine, in the original EvolvaWare system design, Evaluation performs the following tasks: (i) translate GP-evolved parse-trees into VHDL specifications, (ii) simulate the VHDL specifications to verify correctness (if applicable), (iii) synthesize the VHDL specifications into gate-level netlist descriptions, (iv) place-and-route the netlist descriptions into one or more vendor-specific FPGAs, (v) download into the FPGAs the internal FPGA logic, the interconnect logic between FPGAs, and the test data, (vi) invoke the FPGAs with the training data, and (vii) return an evaluation metric (based on a pre-defined evaluation function) back to the GP Engine for fitness level determination.

Evaluation provides the GP Engine a measure of the fitness level of hardware designs in the population when executed in reprogrammable FPGA hardware. Those hardware designs that score well remain in the population and move onto the next generation, while those that do not score well perish. Note that by performing evaluations on the FPGA itself, numerous performance metrics can be factored into the fitness level score, e.g., accuracy, functional correctness, agreement with timing and area constraints, and speed of execution.
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Figure 4. Revised EvolvaWare System Design

4. Revised System Description

In this section we provide a rationale and overview of the revised EvolvaWare system design as it stands in its present incarnation.

Rationale

Recall the original EvolvaWare system design control flow illustration from Figure 3.  To evaluate each parse-tree that the GP Engine generates, that parse-tree was first translated into a VHDL specification by the GP-to-VHDL Translator.  Then, within the Hardware Emulator, a logic synthesis tool and an FPGA place-and-route tool were automatically invoked in succession to transform the VHDL specification into an FPGA bit configuration. A driver then downloaded the bit configuration to the FPGA, stimulated the FPGA with the test data, evaluated the results, and passed the evaluation back to the GP Engine. However, current FPGA place-and-route tools are a major bottleneck to the original control flow due to performance limitations of such tools. In fact, even the fastest FPGA place-and-route tools on the market today take much longer to execute than just executing the GP algorithm directly in software. As a consequence, the original system design achieves an opposite effect from a primary design goal, that being slowing the evolution process rather than speeding it up. Therefore, we developed a revised design which is illustrated in Figure 4.

Overview

First, as Figure 4 illustrates, except for requiring a Human Hardware Designer in the front end, the top-level design of the revised system is the same as the original, i.e., the two designs are still based on the three primary components of the GP Engine, the GP-to-VHDL Translator, and the Hardware Emulator. However, because of the FPGA place-and-route performance limitations (see [6] for a description of the performance), the internal subcomponents and the control flow through the revised design is somewhat different.

It is important to note that the original design is still technically sound; the revised design is best considered a work around solution to an existing performance limitation, and not as a design flaw in the original design. Furthermore, as hardware design automation tools such as FPGA place-and-route improve in performance (as they have been steadily), the original design becomes more feasible. The original design is preferred largely because it is dynamic and more general.

5. Revised System Control Flow

Problem Setup

Prior to invoking the GP Engine subcomponents, a hardware designer needs to first setup the problem to be solved by performing the following tasks: (i) select the problem-specific set of GP primitives representative of the types of hardware designs expected to solve the problem, (ii) define the problem-specific evaluation function to be programmed in the Evaluation and Scoring Unit, and (iii) for each of the GP primitives selected in (i), using the GP-to-VHDL Translator and the VHDL and FPGA Tools, statically transform them into a logically equivalent FPGA bit configuration and store them in the FPGA Component Library. The same transformations illustrated in Figure 3 are still applicable, only now the transformations are performed statically off-line and on the front end as opposed to dynamically in-line and in the loop as was done in the original system design. The FPGA Component Library will contain the FPGA bit configurations for the entire set of GP primitives included in any parse-tree structure generated by the GP Engine.

Evaluation

For a parse-tree structure corresponding to a specific hardware design, the Evaluation and Scoring Unit recursively traverses the parse-tree, evaluates each GP primitive, and computes a score (or fitness) for that parse-tree after all GP primitives have been evaluated using well-known GP techniques [3,4]. As Figure 5 illustrates, the evaluation of each GP primitive of the parse-tree first requires that the GP primitive and its required test data (i.e., data corresponding to its two children branches in the parse-tree) be loaded onto the FPGA. If either one or both are not already loaded on the FPGA, then they must be prior to invoking the GP primitive on its test data. If they are already loaded, then the evaluation process invokes the FPGA programmed with the GP primitive and its test data, and scores the result.

The results of the GP primitive are stored with the Evaluation and Scoring Unit itself. Note that the GP primitive results need to be stored with the Evaluation and Scoring Unit for possible use as test data input when evaluating a GP primitive further up on the parse-tree. Also, once all test data for a GP primitive has been processed, the Evaluation and Scoring Unit then determines whether all the GP primitives of the parse-tree have been evaluated. If not, processing returns to the next GP primitive as determined by the recursive parse-tree traversal. If the parse-tree has been completely evaluated, then control returns back to the GP Process where it can evaluate the fitness of the hardware design as represented by its parse-tree. Note that the evaluation process evaluates the parse-tree primitive by primitive paging in the appropriate primitive and corresponding test data as required. This is fundamentally different than how evaluation was performed in the original design as described previously.
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Figure 5. Control Flow in Revised EvolvaWare System

6. CONCLUSION

We have described at the top- and subcomponent-levels the original EvolvaWare system design and its most recent revision. We described using control flow diagrams how the various components of the original and revised EvolvaWare system designs interact with one another in their quest of discovering (learning, evolving) in a completely automated manner an optimal (or nearly optimal) hardware design to a specified problem. We discussed how the current revised system design arose due to FPGA place-and-route performance limitations, and was a reasonable work around solution to the original design (the latter being preferred largely because it is dynamic and more general). What remains is to further enhance and revise the EvolvaWare system capability and demonstrate it on additional defense-related and optimization problems.
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