
Optimizing Parameters of a Mobile Ad Hoc Network Protocol with
a Genetic Algorithm

David Montana and Jason Redi
BBN Technologies

10 Moulton Street, Cambridge, MA 02138
{dmontana,jredi}@bbn.com

Abstract

Mobile ad hoc networks are typically de-
signed and evaluated in generic simulation
environments. However the real conditions
in which these networks are deployed can be
quite different in terms of RF attentution,
topology, and traffic load. Furthermore, spe-
cific situations often have a need for a net-
work that is optimized along certain charac-
teristics such as delay, energy or overhead. In
response to the variety of conditions and re-
quirements, ad hoc networking protocols are
often designed with many modifiable param-
eters. However, there is currently no method-
ical way for choosing values for the parame-
ters other than intuition and broad experi-
ence. In this paper we investigate the use of
genetic algorithms for automated selection of
parameters in an ad hoc networking system.
We provide experimental results demonstrat-
ing that the genetic algorithm can optimize
for different classes of operating conditions.
We also compare our genetic algorithm opti-
mization against hand-tuning in a complex,
realistic scenario and show how the genetic
algorithm provides better performance.

1 Introduction

There are many situations where a data network is
required in places where there is no fixed networking
infrastructure and no time to create such an infras-
tructure. Examples of such situations occur in mil-
itary operations, law enforcement, and rescue opera-
tions. Ad hoc networking, the ability to form a net-
work dynamically from scratch using wireless connec-
tions, addresses this need. When the nodes of the

network are mobile, as is usually the case, the net-
works formed are called mobile ad hoc networks, or
MANETs. The dynamic nature of MANETs provides
special challenges beyond those in standard data net-
works [5, 9]. Not only must the network form initially,
but it must maintain itself as the nodes move around
and as transmission properties change. With chang-
ing connectivity between nodes, including the entrance
and exit of nodes, the network must have the ability
to adapt its topology to reflect these changes.

The networking protocol governs not only how the
nodes communicate the data they need to send each
other but also how to dynamically form and reform
the network. Mobile ad hoc networks (MANETs) re-
quire special protocols; a review of a range of such
protocols is given in [13]. One challenging aspect of
protocol design is that the ideal behavior of a proto-
col differs based on the situation (i.e., the operating
conditions and the goals). As an example, consider
the case when the nodes are moving very quickly so
that which pairs of nodes are within communications
distance of each other is constantly changing. In this
case, the network should generally incur the overhead
of probing for neighbors and reconfiguring the network
topology quite often. In contrast, consider the case
when the nodes are relatively stationary and the com-
munications capabilities between any two nodes is slow
and rare to change. In this case, the network should
be quite conservative and slow in sending out peri-
odic neighbor discovery packet, and reacting to possi-
ble link changes.

In this paper, we focus on a particular protocol de-
signed for use with nodes that have directional anten-
nas [11, 10]. While it is a specialized protocol, it is
similar in its basic operation to other more standard
protocols, such as optimized link state [2]. Of par-
ticular interest for this work is the fact that it has a
variety of parameters that can be adjusted to change
its behavior. This provides the flexibility to adapt



the protocol’s behavior to different environments and
situations. Below, we discuss further the algorithm
and the parameters that can be adjusted (Section 2),
a genetic algorithm to select values well suited to a
particular situation (Section 3), and experiments that
demonstrate its effectiveness (Section 4).

A large amount of work has been done on the appli-
cation of genetic/evolutionary algorithms (as well as
other stochastic search algorithms such as simulated
annealing and ant colony optimization) to communi-
cations networks. We will not attempt to summarize
all this work, but do refer the interested reader to [15]
(which is complete but now a bit out-of-date) and [7]
(which is more recent but less complete) for pointers
into the literature. Some research specifically on ap-
plying genetic algorithms to ad hoc networks includes
the following. [16] investigates using a genetic algo-
rithm to create routing tables for an underwater ad
hoc network. [12] and [1] examine the application of
genetic algorithms to dynamically optimized routing
in MANETs. [17] looks at how to use a genetic al-
gorithm to cluster network nodes into subnetworks.
However, our work is unique in providing the capa-
bility to adapt the behavior of a MANET to different
operating conditions.

2 The Protocol and Parameters

The particular protocol we used in our work is complex
and described in [11, 10]. While we will not explain
the full protocol here, we provide a brief overview that
includes enough detail to understand the operation of
the particular parameters we tuned in this work.

The network protocol is of the family of “proactive link
state protocols”. This means that the protocol sends
out periodic broadcast heartbeat packets in order to
alert potential neighbors of a node’s existance. If a
node detects “enough” of another node’s heartbeats,
then we define that a communications “link” exists be-
tween the two nodes. If we stop detecting heartbeats
from a neighboring node for a particular amount of
time, we consider the link to be broken. Since the
ability to successfully receive a broadcast packet is a
complex probabilistic function of RF fading, pathloss,
and network congestion, we perform an averaging over
time before declaring an actual change in a link state.
When a link goes up or down, we trigger the trans-
mission of a link state update (LSU) packet, which is
flooded throughout the network. The LSU packet de-
scribes all the (one-hop) links that a node thinks it has.
By distributing these packets thoughout the network,
each node can have a picture of the current topology
and be able to determine the shortest paths between

any two nodes in the network.

Since the processes of detecting the state of the link
and distributing a changed link state take up band-
width in the network, it is undesireable to do this un-
necessarily. However, determining the best rates and
thresholds for these protocols, given a network where
the traffic, topology, and paths are regular changing,
is a difficult task. It is common for someone to hand-
tune a particular scenario, only to find that this partic-
ular tuning causes poor performance at another time
or place in the network.

We now provide a list of those parameters that we
allowed the genetic algorithm to adjust in order to
configure the networking protocol for a particular set
of operating conditions:
• Heartbeat Interval is how often to send neighbor

discovery heartbeats (used for detecting new neigh-
bors as well as a lost link to an existing neighbor).

• Heartbeat Points is the number of points to assign
each received heartbeat from a neighbor node.

• Score History Size is the window of time to ob-
serve for making decisions about scores/points.

• Up Score Threshold is how high a score is needed
within the history window to bring up a link to a
new neighbor.

• Down Score Threshold is how low the score must
go before the link to an existing neighbor is torn
down.

• Routing Algorithm is either Hazy Sighted Link
State [14] or standard link state.

• Routing Event Interrupt Period is how often
the routing module checks for link changes. If a
link has changed, a new routing table is computed
and a changed link state update packet is flooded
through the network.

• Routing Global Interrupt Period is how often
to send a new link state update (LSU) regardless of
whether the state has recently changed or not. This
is done for refreshing previous LSUs and insuring
that previous LSUs are not lost.

• Traffic Max Attempts is the number of
(re)transmission attempts to use at the radio layer
for user traffic.

For all the experiments described in this paper, we
constrained the nodes to all use the same set of pa-
rameter values, so we need to select only a single set
of parameter values for the network. [Note that we
have done some experiments not described here where
nodes of different varieties (helicopters and ground ve-
hicles) could use different parameter values.]

As a simple example of how optimal parameter val-
ues vary based on the operating conditions, consider



again the two scenarios introduced above. In the first
scenario, the nodes are on average relatively close to-
gether but moving quickly relative to each other. In
the second scenario, the nodes are relatively distant
from each other but moving slowly. In the first case,
the network needs to bring links up and down quickly,
and hence should potentially utilize more frequent
heartbeats, less averaging over time, and less stringent
thresholds to pass for bringing links up and down. In
the second case, the networking algorithm should po-
tentially use more averaging over time to overcome
noise, less frequent heartbeats for less overhead, and
more stringent thresholds.

What makes selecting a good set of networking pro-
tocol parameters difficult is the interaction between
parameters. This is not as simple as just increasing or
decreasing the value of a single parameter. Changing
a parameter value in the right direction can make per-
formance worse unless some other parameters are also
adjusted the right amounts. (In biological terms, this
interdependence between parameters is called epista-
sis.)

Further complicating the process of parameter tuning
is the large amount of time required for evaluating the
performance of a single set of parameters. For exam-
ple, in the experiments described below, it required
approximately 10 minutes to run a simulation to eval-
uate a parameter set. It is not uncommon for some
ad hoc network simulations to take hours or even days
per run.

While the parameter values are very difficult to tune
by hand, the process of parameter tuning is amenable
to automated optimization. One can associate a nu-
merical score with the performance of the networking
algorithm. (Since there may be multiple performance
criteria, it may require combining multiple scores into
a single score.) Hence, this is a standard function op-
timization problem since the goal is to optimize the
value of the performance metric over the space of pos-
sible parameter values. Since it is possible to run the
simulations to evaluate the different parameter sets in
an automated fashion, the optimization process can
proceed without human intervention.

The resulting optimization problem has the following
properties:
• a discrete search space (because the parameters can

only take on a discrete set of values)
• a nonlinear and potentially discontinuous objective

function
• a rugged landscape, i.e. many local optima far from

the global optimum
This limits which optimization algorithms are sen-

Figure 1: The genetic operators

sible ones to apply. Algorithms to avoid in-
clude gradient-based methods, such as Levenberg-
Marquardt, Newton-Raphson, quasi-Newton, and con-
jugate gradient, because they degrade badly when ap-
plied to a rugged landscape rather than a function that
is smooth and has a single peak (or a small number
of local peaks). Stochastic methods such as simu-
lated annealing, tabu search, and genetic algorithms
perform much better with rugged landscapes. Ge-
netic algorithms, because of their population-based
approach spreading “probes” throughout the search
space, are particularly robust with respect to search
space ruggedness. Due to limited time and resources,
we could only investigate one optimization algorithm,
so we chose to use a genetic algorithm because of the
confidence that it would work due to its robustness.
However, in the future it is worth doing a comparison
with an algorithm such as simulated annealing, which
cannot handle large amounts of ruggedness but per-
forms better if the search space is only moderately
rugged. [Note that one other big advantage of ge-
netic algorithms is the ability to parallelize them on
a large scale by spreading the evaluations across dif-
ferent machine. This could be particularly important
when doing optimization runs much larger than those
described below.]

3 The Optimization Algorithm

We now discuss some key aspects of the genetic algo-
rithm we have defined to optimize the parameters of
the networking protocol.

Representation - We use what is now the standard
representation for parameter optimization problems,
choosing the chromosome to be just a list of the param-
eter values. This is often referred to as a real-valued
(as opposed to binary-valued) chromosome. For each
parameter we are optimizing, we select a minimum
value, maximum value, and step size. This defines a
discrete set of possible values for the parameter.

Generating New Individuals - We initialize the
population with purely random individuals. The ge-
netic operators we use are the standard mutation and
uniform crossover shown in Figure 1, with a probabil-
ity of 0.5 for each. We use an exponential parent se-



lection scheme and a steady-state replacement policy,
adding a new individual into the population immedi-
ately after its generation and discarding the worst pop-
ulation member. A steady-state replacement strategy
generally finds a solution much faster than a gener-
ational one because it can immediately exploit good
individuals, and this is important given how long it
requires to evaluate an individual.

Evaluation of an Individual - To evaluate an indi-
vidual, our algorithm executes a simulation with the
networking parameters set as given in the individ-
ual. During the simulation, it gathers statistics about
networking performance, and afterwards it combines
these into a single score.

The simulation uses OPNET Modeler with the OP-
NET Wireless Module, commercial software packages
available from OPNET Technologies [8]. This soft-
ware provides a high-fidelity model of a wireless net-
work that allows the user to specify properties of the
model including: RF propagation, interference, trans-
mitter/receiver characteristics, and node mobility.

To complement the OPNET software, we created a
scenario generator that accepts as inputs high-level
specifications for node motion and network traffic. It
creates point-by-point trajectories and packet trans-
mission histories for each node that are randomly se-
lected according to the specifications. The motion
specifications include the dimensions of the area in
which the nodes are constrained to move, the con-
stant speed at which the nodes move, and the time
spent stationary at waypoints. From these specifica-
tions, the scenario generator creates for each node a se-
quence of piecewise-constant-velocity legs by selecting
random points in the area and connecting them, with
stopover time at each point where the path changes
direction. The scenario generator also creates a set
of packets, each with a source node, destination node,
and time, from some statistical network traffic spec-
ifications. Throughout a genetic algorithm run, we
use a single scenario generated prior to the run. This
scenario plus predefined RF propagation profiles and
interference models provide a set of inputs to the sim-
ulator that are the same for each execution. Hence,
differences in the performance are due solely to differ-
ent values for the parameters.

For calculating the score, there are a variety of poten-
tial performance metrics. Some are based on quality
of service (QoS), such as dropped packets and trans-
mission delay. Others are not directly tied to QoS,
such as power consumption rate. Hence, our problem
is an example of a multiobjective optimization prob-
lem. There are a variety of different techniques for

using genetic algorithms for multiobjective optimiza-
tion [3]. We use the simplest and most common, cre-
ate a single objective function as the weighted sum
of multiple objective criteria. Selection of the values
of the weights provides an explicit tradeoff between
different criteria. (Varying weights across different op-
timization runs allows generation of different points on
the Pareto optimal surface [6].) For the current work,
we used a weighted sum of just two criteria: dropped
packets and transmission delay. In fact, we ended up
putting almost all the weight on the dropped packets
score.

4 Experiments

We have performed a set of preliminary experiments
that illustrate some of the properties of the optimiza-
tion algorithm described above. In this section, we
examine the data used for these experiments and the
experimental procedure employed, and then provide
some results and analysis.

4.1 Datasets

We used one particular dataset to compare automated
optimization to manual tuning of parameters. This
dataset is based on a live mobile network demonstra-
tion performed for the DARPA/Army Future Com-
bat System Communication program at Lakehurst,
NJ. In this demonstration, mobile nodes (SUVs) drove
around a wooded area communicating with each other
using ad hoc networking. A helicopter was also a node
in the network, though it due to foliage and build-
ings it had communications with only about half of the
ground nodes at any one time. As part of this program,
we had carefully constructed a simulation scenario that
modeled the terrian and network of this demonstra-
tion. Of particular interest is a 60-second snippet
of this scenario which it proves particularly difficult
for the networking algorithm to maintain good perfor-
mance. A 60-second ”introduction” with no data traf-
fic has been added to this snippet to allow calibration
by the networking algorithm. This enhanced snippet
has been the focus of extensive efforts to hand-tune the
parameters. Hence, using this dataset provides a good
means to measure how well the automated approach
compares with the manual approach.

We used a scenario generator to create additional
datasets. While these artificially generated datasets
are less realistic than the Lakehurst data, they pro-
vide a means to run controlled experiments investi-
gating the performance of the optimization algorithm.
The scenario generator produces randomized scenar-



ios with nodes moving and communicating according
to certain specified criteria. One specifies the following
as inputs:
• the number of nodes
• the size of the area over which the nodes move
• the propagation loss model
• the average data rates between nodes
• the speed with which the nodes move
and the scenario generator will create a scenario satis-
fying these specifications. Each generated node trajec-
tory consists of a set of randomly selected waypoints in
the given area with straight-line, constant-speed mo-
tion between the waypoints.

We used two different sets of specifications for the sce-
nario generator. Both specifications have 20 nodes,
use a log-distance propagation loss model [4] with ex-
ponent of 4, have network traffic which follow Poisson
arrivial process with uniform source/destination distri-
bution, and a square area of size 1200 meters by 1200
meters for the node to move according to the random
waypoint model. The sole difference in the specifi-
cations is the speed of the nodes, one having nodes
traveling very rapidly at 10 meters per second, and
the other with nodes traveling slowly at 0.5 m/s. We
have therefore called the specifications “speedy” and
“poky”. For each of these two specifications, we have
generated two 100-second datasets. One of these is to
use for training, i.e. for evaluation during optimiza-
tion runs, and the other for testing the performance
of the optimized parameter sets. We call the training
sets poky1 and speedy1 and the test sets poky2 and
speedy2.

4.2 Experimental Procedure

A big issue for executing experiments is the wall time
it takes for an individual simulation in OPNET to
complete. For example, one simulation takes on aver-
age approximately 7-8 minutes for Lakehurst data and
slightly less for the scenarios generated by the scenario
generator. Since an optimization run requires evalu-
ation of 600-1000 different parameter sets, and hence
the same number of executions of the simulation, an
optimization run takes multiple days on a single ma-
chine. This limited the number of runs we could do,
forcing us to settle for a single run of the genetic algo-
rithm per experiment when we would otherwise have
prefered multiple runs in order to perform averaging
of performance statistics. (Recall that the genetic al-
gorithm is a stochastic algorithm and gets slightly dif-
ferent results each time.)

We used the following values of the genetic algorithm
parameters. The population size was 300. The weights

in the scoring function defining the tradeoff between
the fraction of dropped packets and the average delay
in seconds were chosen so that the former was weighted
ten times as heavily as the latter. Since the fraction
of dropped packets is generally ten times bigger than
the average delay (with the former usually betweeen
1 and 10 and the latter usually between 0.1 and 1),
giving dropped packets ten times more weight makes
this by far the primary metric of performance.

For the experiments on the Lakehurst data compar-
ing automated to manual tuning, we were evaluating
the effectiveness of training (i.e., selecting parameters
for optimal performance on a known dataset) and so
we just considered how well the parameters performed
on the training data. However, for the experiments
involving the datasets created by the scenario genera-
tor, the goal was to determine how well the parameters
tuned to one (or more) scenario(s) perform in a differ-
ent scenario. Therefore, we tested the performance of
the parameters on test datasets different from those
used for training.

4.3 Results and Analysis

As discussed above, we have used the Lakehurst data
to compare manual parameter tuning to automated
tuning, since we had previously spent much effort tun-
ing to this dataset manually. The results are the fol-
lowing:

Approach Dropped Packets Average Delay
Manual 0.089 0.0089

Automated 0.042 0.0036

Clearly, automated parameter tuning produces better
results. In fact, if we look at the progress of the auto-
mated run on the Lakehurst data shown in Figure 3,
we can can see that we do not require any sort of di-
rected optimization to beat manual tuning. With just
the 300 completely randomly generated individuals of
the initial population, the automated search already
outperforms manual tuning. However, we can see in
Figure 3, not only for this optimization run but also
the runs described below, that the genetic algorithm
does outperform random search, improving the score
significantly after random search has lost momentum.

The remainder of the experiments investigate the abil-
ity of automated parameter tuning to generalize to
data on which it was not trained. (A very common
problem in statistical estimation is overfitting to the
training data due to insufficient quantity and/or vari-
ety of training data relative to the number of parame-
ters to be estimated.) Generalization to new scenarios
is critical to the success of the networking algorithm



trained on tested on
speedy poky speedy2 poky2

speedy 3.9% N/A 3.9% 10.3%
poky N/A 0.3% 16.8% 2.0%

speedy+poky 3.9% 0.9% 4.8% 0.6%

Figure 2: The performance (dropped packets) of pa-
rameter sets trained on different data

in the real world. An actual scenario is different from
even the best model due to reasons ranging from an
inability to precisely model propagation loss and net-
work traffic to an inability to know precisely the tra-
jectories of the nodes.

We derived three different sets of parameters, one
trained on (i.e., optimized to) the poky1 dataset, one
trained on the speedy1 dataset, and one trained us-
ing both poky1 and speedy1 (looking at the aggregate
performance). Then, we tested all three of these pa-
rameter sets on poky2 and speedy2. The results are
shown in Figure 2.

One conclusion that we can draw based on these pre-
liminary results is that parameters trained on one sce-
nario can generalize to statistically similar scenarios
but not in general to statistically different scenarios.
We observe that the parameters derived by training
on speedy1 perform similarly well on speedy2 but do
poorly on poky 2. Similarly, the parameters trained
on both speedy1 and poky1 perform well on both test
sets, speedy2 and poky2. The parameters trained on
poky1 do perform poorly on speedy2 as expected, but
in an apparent anomaly also have relatively poor per-
formance on poky2. This anomaly is explained by the
fact that the nodes are moving so slowly that they re-
main in essentially the same geometric configuration
for the entire duration of the scenario. So, the param-
eters are specifically tuned to the geometric configu-
ration of the poky1 scenario, and cannot generalize
to the new geometry of the poky2 scenario. (In the
speedy1 scenario, the nodes are covering a wide vari-
ety of different geometric configurations, providing a
more diverse training set, and hence leading to better
generalization.)

A second conclusion that we can draw from these re-
sults is that more variety in the training set leads
to parameters more robust over a range of different
opearting conditions (but potentially less well tuned
to specific conditions). This robustness is illustrated
by the parameters trained on the aggregate of the two
training sets (speedy1 and poky1) doing well on both
test sets (speedy2 and poky2), and much better on
poky2 than even the parameters trained on poky1.

This stands in contrast to the poor performance of pa-
rameters trained on one type of scenario when tested
on the other type. The experimental results do not
show that the parameters trained over a wider range
of opearting conditions perform worse in particular sit-
uations than those trained specifically for those con-
ditions. However, based on past experience of ours
(e.g., [6]) and others optimizing parameter values, we
do have reasonable expectations that such a perfor-
mance degradation will occur if we try to make one
set of parameters cover too many different types of
operating conditions.

5 Conclusions and Future Work

The first conclusion we can draw from our work is
that the values chosen for the different parameters of
the networking algorithm make a big difference in the
performance of the network. Furthermore, there is not
a single set of parameters that is the best, since the
performance of a set of parameters depends greatly on
the conditions under which the network is operating.
This makes the problem of selecting a good set of pa-
rameters an important and difficult one.

A second conclusion is that automated parameter op-
timization produces significantly better parameter val-
ues than hand tuning, at least based on our prelimi-
nary experiments. Hence, the automated approach is
one well worth pursuing to greater levels of sophisti-
cation.

A third conclusion is that for automated parameter
optimization to work best, the training data should
represent the full range of operating conditions under
which the parameters need to function. This need for
sufficient quantity of representative training data is
one that is not unique to this problem but is rather
common to all forms of statistical estimation.

The work we have described is just preliminary and
suggests some possible future work. One potential fu-
ture task is comparing the genetic algorithm optimiza-
tion performance with other stochastic optimization
algorithms such as simulated annealing or tabu search.
While we only had opportunity to investigate one algo-
rithm so far, it would be valuable to do a comparative
study of optimization techniques.

A second future task is implementation of the capa-
bility to have multiple machines running evaluations
of different parameters simultaneously. An important
feature of genetic algorithms is the ability to achieve
approximately linear speedups via parallel evaluations
(e.g., [6]), and we should exploit this to speed the op-
timization runs.



Figure 3: Progress of automated optimization on four different datasets

Another future task is trying the parameter optimiza-
tion, which is performed using simulation, in real net-
works. The need to try out hundreds of different pa-
rameter value combinations in a scenario where ev-
erything else remains the same means that simulation
is a necessary piece of the optimization process. How-
ever, we should do experiments with how well parame-
ters optimized in simulation perform in a real network.
Furthermore, we should investigate how best to mea-
sure the conditions of a real network so that we can
capture them in simulation. Potentially we could even
have the parameters of a real network optimized in
real time.

6 Acknowledgements

This work was sponsored by DARPA/IPTO under
contract number DASG60-02-C-0060. Content of this
work does not necessarily reflect the position or the
policy of the Government, and no official endorsement
should be inferred.

References

[1] C. Ahn and R. Ramakrishna. A genetic algorithm
for shortest path routing problem and the sizing of
populations. IEEE Transactions on Evolutionary
Computation, 6(6):566–579, 2002.

[2] T. Clausen and P. Jacquet. Optimized link state
routing protocol, rfc 3626 (experimental), 2003.
http://www.ietf.org/rfc/rfc3626.txt.

[3] C. Coello. A comprehensive survey of
evolutionary-based multiobjective optimization
techniques. Knowledge and Information Systems,
1(3):269–308, 1999.

[4] J. D. Gibson. The Communications Handbook.
CRC Press, 1997.

[5] Z. Haas, J. Deng, B. Liang, P. Papadimitratos,
and S. Sajama. Wireless ad hoc networks.
In J. Proakis, editor, Wiley Encyclopedia of
Telecommunications. John Wiley and Sons, 2002.

[6] D. Montana. Automated parameter tuning for in-
terpretation of synthetic images. In L. Davis, ed-
itor, Handbook of Genetic Algorithms, pages 282–
311. Van Nostrand Reinhold, 1991.

[7] D. Montana and T. Hussain. Adaptive redesign
of reconfigurable data networks using genetic al-
gorithms. Applied Soft Computing, 4(4):433–444,
2004.

[8] Opnet Technologies, Inc. Wireless module, 2004.
http://www.opnet.com/products/modules/
wireless module.html.

[9] R. Ramanathan and J. Redi. A brief overview of
ad hoc networks: challenges and directions. IEEE
Communications Magazine, 40(5):20–22, 2002.



[10] R. Ramanathan, J. Redi, C. Santivanez, D. Wig-
gins, and S. Polit. Ad hoc networking with
directional antennas: A complete system so-
lution. Proceedings for the 2004 IEEE Wire-
less Networking and Communications Conference
(WCNC 2004), 2004.

[11] R. Ramanathan, J. Redi, C. Santivanez, D. Wig-
gins, and S. Polit. Ad hoc networking with di-
rectional antennas: A complete system solution.
IEEE Journal on Selected Areas In Communica-
tions, to appear, March 2005.

[12] A. Roy and S. Das. QM2RP: A QoS-based mobile
multicast routing protocol using multi-objective
genetic algorithm. Wireless Networks, 10(3):271–
286, 2004.

[13] E. Royer and C.-K. Toh. A review of current
routing protocols for ad hoc mobile wireless net-
works. IEEE Personal Communications, 6(4):46–
55, 1999.

[14] C. Santivanez and R. Ramanathan. Hazy sighted
link state (hsls) routing: A scalable link state al-
gorithm. BBN Technical Memo BBNTM-1301,
BBN Technologies, 2001.

[15] M. Sinclair. Evolutionary telecommunications: A
summary. In GECCO’99 Workshop on Evolution-
ary Telecommunications: Past, Present and Fu-
ture, pages 209–212, 1999.

[16] E. Sozer, M. Stojanovic, and J. Proakis. Initializa-
tion and routing optimization for ad-hoc under-
water acoustic networks. In Proceedings of Op-
network, 2000.

[17] D. Turgut, S. Das, R. Elmasri, and B. Turgut.
Optimizing clustering algorithm in mobile ad
hoc networks using genetic algorithmic approach.
Proceedings of IEEE Global Telecommunications
Conference (GLOBECOM), 21(1):62–66, 2002.


